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Abstract: Ontology alignment is an essential and complex task
to integrate heterogeneous ontology. The meta-heuristic algorithm
has proven to be an effective method for ontology alignment.
However, it only applies the inherent advantages of meta-
heuristics algorithm and rarely considers the execution efficiency,
especially the multi-objective ontology alignment model. The per‐
formance of such multi-objective optimization models mostly de‐
pends on the well-distributed and the fast-converged set of solu‐
tions in real-world applications. In this paper, two multi-objective
grasshopper optimization algorithms (MOGOA) are proposed to
enhance ontology alignment. One is ε -dominance concept based
GOA (EMO-GOA) and the other is fast Non-dominated Sorting
based GOA (NS-MOGOA). The performance of the two methods
to align the ontology is evaluated by using the benchmark dataset.
The results demonstrate that the proposed EMO-GOA and NS-
MOGOA improve the quality of ontology alignment and reduce
the running time compared with other well-known metaheuristic
and the state-of-the-art ontology alignment methods.
Key words: ontology alignment; multi-objective grasshopper op‐
timization algorithm; ε -dominance; fast non-dominated sorting;
knowledge integration
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0 Introduction

Ontology is a clear formal specification for sharing
concepts and is widely used to support knowledge inte‐
gration and interoperability such as intelligent transporta‐
tion systems [1], industrial megaprojects analytics [2],
product lifecycle management [3], and cognitive and ro‐
botic systems [4]. In recent years, more and more ontolo‐
gies have been developed by using the Semantic Web
standard technologies in the same domain of interest.
However, different ontology design experts may use dif‐
ferent terms to describe the concept of the same thing,
which emerges the heterogeneity problem between on‐
tologies. Therefore, ontology-based data management is
becoming more and more complex. In order to apply
these knowledge widely, ontology alignment is a key
process. The goal of ontology alignment is to find a set
of semantic correspondences between different ontolo‐
gies for further handled knowledge-based systems. In
the past few years, many ontology alignment methods or
techniques have been introduced in the literature. Espe‐
cially the method of weighted aggregation for combin‐
ing multiple basic matchers through swarm and evolu‐
tionary algorithms has demonstrated to be an effective
method. These methods utilize weights to combine
lexical-based, linguistic-based, and structure-based
matchers for finding more correspondences between en‐
tities to make full use of the information contained
within context of an ontology. Weights based methods
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are divided into two categories: fixed weights and dy‐
namic weights. However, the fixed weights manually
configured according to experimental results have cer‐
tain limitations, which may reduce the quality of align‐
ment. Therefore, adaptive weights allocation are an ef‐
fective method for combining matchers adequately.

In recent years, the successful application of meta-
heuristic algorithm is very noteworthy. Swarm intelli‐
gence algorithm has successfully solved the ontology
alignment problem and obtained the better ontology
alignment quality in the form of a single objective. How‐
ever, these methods only apply the inherent advantages
of meta-heuristics and rarely consider the execution effi‐
ciency, especially the multi-objective ontology align‐
ment model. Further, the performance of such multi-
objective optimization models mostly depends on the
well-distributed and the fast-converged set of solutions
in specific applications. In order to improve the effi‐
ciency and effect of multi-objective ontology alignment
methods, in this work, the grasshopper optimization al‐
gorithms are improved to perform multi-objective ontol‐
ogy alignment tasks more efficiently. Grasshopper Opti‐
mization Algorithm (GOA) is a population based meta-
heuristic algorithm inspired by the behavioral character‐
istics of grasshopper swarms to simulate exploration and
exploitation processes of the swarm intelligence algo‐
rithm [5]. According to the claim of Bock et al [6], ontol‐
ogy alignment as an optimization problem needs to
maintain the number of correspondences and a set of cor‐
rect correspondences at the same time. Therefore, the on‐
tology alignment can be regarded as a multi-objective
optimization problem with two objectives: the number
of correspondences and the set of correct correspon‐
dences. Further, GOA balances the exploration and ex‐
ploitation in the search process through an adaptive pa‐
rameter. The high repulsive force between grasshoppers
gives GOA the advantages of high exploration and local
optimal avoidance. The attraction between grasshoppers
makes GOA algorithm have strong exploitation and con‐
vergence performance. These characteristics make the
GOA algorithm more adaptable to complex multi-
objective search problems and surpass other algorithms
such as particle swarm optimization (PSO), bat optimiza‐
tion algorithm (BA), Bonobo Optimizer (BO), and fire‐
fly algorithm (FA). These advantages motivate us to de‐
velop an ontology alignment system based on multi-
objective GOA. In this paper, two different multi-
objective GOA are proposed to perform ontology align‐

ment tasks in a more efficient way. One is ε-dominance
concept based GOA (EMO-GOA) and the other is fast
non-dominated sorting based GOA (NS-MOGOA). The
proposed EMO-GOA approach uses the grid technology
based on ε -dominance concept to keep the diversity of
the non-dominated solution in the archive, and reduce
the time to converge to the Pareto optimal solution. The
NS-MOGOA uses a fast non-dominated sorting method
by assigning ranking and crowding distance to the popu‐
lation, which speeds up the completion of the ontology
alignment task.

The remainder of this paper is organized as follows.
Section 1 describes the related work of this paper. Sec‐
tion 2 describes the related concepts underlying our re‐
search work. Section 3 gives the mathematical model of
the multi-objective ontology alignment problem. The
modified EMO-GOA is proposed in Section 4. Section 5
proposes the NS-MOGOA. Section 6 initializes the con‐
ditions required for the experiments and the results are
discussed. Section 7 concludes with an overview of our
future work.

1 Related Works

In the past few years, evolutionary computing tech‐
nology based ontology alignment methods have been
proposed to address the problem of combining multiple
basic matchers. These methods are divided into two cat‐
egories: direct optimization alignment and the ontology
meta-matching technique. The method of directly opti‐
mizing an alignment is to search for a correspondence
set in the candidate correspondences. This set is also
called an alignment. Furthermore, each confidence value
for a correspondence is calculated by combining mul‐
tiple basic matchers. The most famous method of this
type is MapPSO, which directly optimizes an alignment
evaluated by a fitness function with two objectives [6].
The method minimizes the aggregate values of lexical-
based, linguistic-based, and structure-based matchers
and evaluates candidate alignments by using fitness
functions. The optimization process is performed by us‐
ing discrete particle swarm optimization. In detail, a can‐
didate solution is randomly selected from the Class,
Data property and Object property space. The update
process deletes some correspondences when the fitness
function decreases, and some new correspondences are
added. When the termination condition is reached, a sub‐
optimal alignment is found. The limitation of this
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method is that the weight value of the combined match‐

ers is fixed. This similar work is GAOM, which uses an

evaluation function to evaluate candidate alignments in

the optimization process of genetic algorithms [7]. In re‐

cent years, Mohammadi et al [8] proposed a method to di‐

rectly optimize ontology alignment based on simulated

annealing algorithm from the perspective of reducing the

time of calculation and memory. The authors model the

ontology alignment problem as a function of optimizing

a state, and an optimal state is obtained by performing a

simulated annealing algorithm. This method uses several

matchers to calculate a similarity matrix. The confidence

of each correspondence is taken from the maximum

value calculated by these matchers which utilize all in‐

formation of a pair of entities such as name, label and

comment.

Another category is the ontology meta-matching

technology, which can be considered to automatically se‐

lect or configure appropriate weights and filtering thresh‐

olds during optimization process [9]. The earliest meta-

matching method is GOAL [10]. Instead of directly opti‐

mizing the candidate alignment between two ontologies,

this method uses a genetic algorithm to set the weights,

and to find a suboptimal alignment. This algorithm

searches for different weight configurations, i.e., a candi‐

date solution vector, and finds the best set of weights in

infinite search space. The evaluation metric of a solution

is to use the precision and recall of the reconciliation.

Similarly, Naya et al [11] used the genetic algorithm to

find out appropriate weights for aggregating different

similarity metrics into a final measure. Each individual

represents a specific combination of metrics, and the

method finds the combination and provides the best

alignment. The genetic algorithm was also used in Ref.

[12] for optimizing a suboptimal alignment. The differ‐

ence is that the weight and the threshold are coded in the

chromosome at the same time. Xue et al [13] utilized

multi-objective genetic algorithm (NSGA-II) to align on‐

tology. In addition, also in Ref. [14], the multi-objective

evolutionary algorithm based on decomposition (MOEA/

D) was utilized for solving ontology alignment problem.

For these two multi-objective approaches, precision and

recall are used as two objectives. Although these meta-

matching methods have obtained good alignment qual‐

ity, they rarely consider the execution efficiency of meta-

heuristics algorithms, especially the multi-objective on‐

tology alignment model.

In recent years, researchers have proposed different

methods based on newly developed meta-heuristic algo‐

rithms to solve the ontology meta-matching problem,

and these methods do not require a priori knowledge in

the alignment process. For example, Acampora et al [15]

proposed an ontology alignment process based on a hy‐

brid evolutionary algorithm, which can effectively aggre‐

gate a variety of basic matchers without a priori knowl‐

edge. In the end, a suboptimal alignment was obtained

between the given two ontologies. In addition, also in

Ref.[16], the NSGA-II was utilized to solve the ontology

meta-matching problem and the problem of prior knowl‐

edge. Ryma et al [17] proposed a hybridization method by

combining the Hill climbing local search technique into

the genetic algorithm for large ontology alignment with‐

out a priori knowledge. Forsati et al [18] proposed an ef‐

fective method based on Harmony Search (HSOMap).

This method uses a weighted harmonic-mean method to

aggregate various matchers into a single confidence

among all possible correspondences between two ontolo‐

gies. Lv et al [19] proposed a novel approach by using

grasshopper optimization algorithm to solve the ontol‐

ogy meta-matching problem. This method makes use of

various matchers and does not require a priori knowl‐

edge in the alignment process. As each basic matcher

can capture the information of an entity from a different

perspective, the aggregation technique of multiple

matchers can enhance the matching effect of the algo‐

rithm. For deep reviews of other meta-heuristics based

methods, consider the following articles: utilizing Me‐

metic algorithm through partial reference alignment to

evaluate candidate solution [20], using Memetic algorithm

through MatchFmeasure and Unanimous improvement

ratio to evaluate candidate solution [21], using the Tabu

search improved compact evolutionary algorithm to

match sensor ontologies [22], and matching ontology

based on instance by using Memetic algorithm [23]. These

methods also only focus on solving the problem of rely‐

ing on prior knowledge and improving the quality of on‐

tology alignment without considering the execution effi‐

ciency of meta-heuristic algorithms.

In this paper, the well-distributed and the fast-

converged set of solutions for multi-objective meta-

heuristic algorithms are considered. Two different GOA

are proposed for multi-objective ontology alignment.

242



LV Zhaoming et al: Improving the Efficiency of Multi-Objective Grasshopper …

2 Preliminaries

In this section, the ontology, ontology alignment,

and two basic concepts related to MOOP are defined as

follows.

2.1 Ontology and Ontology Alignment

Definition 1 (Ontology) An ontology is formal‐

ized as O =<C, P, I, V, R> , where:

1) C represents a collection of classes;

2) P = {P1, P2,⋯, Pn} is a collection of properties;

3) I = {I1, I2, ⋯, In} represents instance information

of concepts;

4) V indicates the annotations information of con‐

cepts;

5) R = {R1, R2, ⋯ , Rn} represents axioms of con‐

cepts.

Definition 2 (Ontology alignment)

Ontology alignment is a task of finding a set of pair

of entities between different ontologies. In this work, a

pair of entities is also called correspondence, matching

or mapping. The algorithm functioned to achieve this

task can be defined as follows. This algorithm takes

three parameters O1O2and P as input and returns an

alignment M, which is a set of finding correspondences.

The O1 and O2 are two ontologies, and P is a set of pa‐

rameters [24].

M =F ( )O1O2P (1)

Definition 3 (Pareto dominance)

Assuming x and y are any two solution vectors in

the evolutionary population, then if x is called to domi‐

nate y (denoted by x y) , it must meet two conditions:

For all sub-objectives, x is not worse than y and at least

one sub-objective makes that x is better than y. This

mathematical model is defined as follows.

( )"kÎ { }12r : fk( )x ≤ fk( )y ⋀
( )$lÎ { }12r : fl( )x < fl( )y (2)

Definition 4 (Pareto optimal solution) A solution

x is said a Pareto optimal solution because it is not domi‐

nated by any vector in the decision space Ω. The Pareto

optimal solution is mathematically defined as follows:

yÎΩ :y x (3)

Definition 5 (Pareto optimal solution set) A Pa‐

reto optimal solution set (POS) is composed of multiple

Pareto optimal solutions [25].

POS ={ |x yÎΩ :y }x (4)

2.2 Multi-Objective Grasshopper Optimization
Algorithm

In 2018, Mirjalili et al [26] proposed a multi-objective
grasshopper optimization algorithm inspired from the
behavior of grasshoppers swarms. In order to solve the
optimization problem, a mathematical model was
proposed by simulating the foraging behavior of
grasshopper swarms. In this model, a social interaction
function realizes the attraction and repulsion between
grasshopper swarms. Furthermore, this repulsive force
realizes the exploration process of GOA in a search
space, and this attraction force realizes the exploitation
and convergence process. In order to balance these two
search processes, an adaptive comfort zone coefficient
leads to an appropriate balance between exploration and
exploitation. In the multi-objective version, the Pareto
dominance, an archive and target selection techniques
are introduced into the algorithm to optimize a Pareto
optimal solution set. Further, the Pareto optimal
dominance is integrated into GOA to compare solutions
with multiple objectives. In order to obtain a non-
dominated solution set, i.e., Pareto optimal solution set,
an external archiving technique is used to store the non-
dominated solutions and is updated after the population
evolves. The mathematical model is defined as follows:

X i = cw
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÷
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÷
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j = 1

j ¹ i
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cn

p - q
2

S ( )dij
dij + Td (5)

X i is the updated position vector of the i-th grass‐
hopper; cw is similar to the inertia weight of particle
swarm optimization, which balances the exploration and
exploitation; p and q are the upper and lower bounds of

the search range;Td is the currently searched optimal tar‐

get value, anddij is a unit vector from the i-th grasshop‐

per to j-th grasshopper; S is the attraction function which
is defined as follows.

S ( )dij = ue
-dij

τ - e-dij (6)

where dij is the distance between the i-th and the j-th
grasshopper; u is the strength of attraction; τ indicates

the attractive length scale. The unit vectordij is defined

as follows:

dij =
x j - x i

dij

(7)

where x j is the current position vector of the j-th grass‐
hopper; x i is the current position vector of the i-th grass‐
hopper. In equation (5), cn is an internal parameter,
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which is the decreasing coefficient to shrink the comfort
zone, repulsion zone and attraction zone; The cw and cn

is defined as follows:

cw = cn = cmax - t
cmax - cmin

L
(8)

where cmax and cmin indicate the maximum value and
minimum value of the parameter c, respectively; t is the
current iteration number; L is the maximum number of
iterations.

3 Mathematical Model of the
Multi-Objective Ontology Alignment
Method

According to the above analysis, the approach us‐
ing meta-heuristics needs to be modeled as multi-
objective optimization problem to solve the ontology
alignment problem in a more suitable way. A mathemati‐
cal model for the multi-objective ontology matching
problem is defined. Subsequently, the data structure of
the grasshopper is represented, and two objective func‐
tions are introduced. The mathematical model of the
multi-objective optimization problem is defined as fol‐
lows:

Given a vector X = ( x1x2 xn )  XÎΩ and it sat‐

isfies the following conditions:
gi( X ) ≥ 0 i = 12k

hl( X ) = 0 i = 12l

Considering a maximization problem for ontology
alignment, there are k conflicting objectives to be opti‐
mized. This optimization function is defined as follows:

Maximize f ( )X = ( )f1( )X f2( )X fk( )X (9)

For a candidate solution in the population, each
grasshopper position also represents a set of weights
used in the basic matcher aggregation task and is associ‐
ated with a candidate alignment in the meta-matching
method. The value of each weight indicates the contribu‐
tion for a basic matcher. In order to adequately capture
the information of the ontology, the matchers with differ‐
ent capabilities are used in the proposed method. There‐
fore, a candidate solution vector X is represented as fol‐
lows.

ì

í

î

ïïïï

ïïïï

X = ( )r1r2 rn

ri =∑
i = 1

n

wi ´mi (ce )s.t.∑
i = 1

n

wi = 1
(10)

where ce is a correspondence, wi is the weight of the i-th

matcher, mi (i∈[1,n]) is the i-th matcher, n is the number
of matchers.

Inspired by Bock et al [6], the transformation of on‐
tology alignment task into an optimization problem re‐
quires two objectives: 1) the number of correspon‐
dences; 2) a set of correct correspondences. Therefore,
two evaluation functions were proposed. Furthermore,
we consider the matching probability of correspon‐
dences for a candidate alignment found during perform.
It is formulated to the first objective, which is formally
defined as follows:

f1( )X =
|| X

||O1 ´O2

(11)

In order to protect the elite individuals, it is nec‐
essary to maximize the average confidence of corre‐
spondences in an alignment, which is formally defined
as follows:

f2( )X =
∑
i = 1

|| X

ri

|| X
(12)

where | X | is the number of correspondences for an align‐

ment found so far, ri is the confidence weighted for a

correspondence, and |O1 ´O2 | represents the total num‐

ber of candidate correspondences between two ontolo‐
gies.

In the next sections, two versions of the multi-
objective grasshopper optimization algorithm are pro‐
posed to investigate the matching quality and calculation
time for solving ontology alignment problem.

4 Proposed EMO-GOA Algorithm

Considering that the two essential components of a
multi-objective optimization algorithm are the selecting
of non-dominated solutions and the maintaining of the
diversity of non-dominated solutions in the optimization
process, we propose an archive update mechanism based
on the ε-domination concept to improve the distribution
and convergence speed. In the proposed EMO-GOA, a
grid or hyper-box mechanism based on the ε-dominance
concept is used to improve the original MOGOA which
is only based on the Pareto dominance. The main reason
for this modification is that in the steady-state MOEA
experiment by ε -dominance, it has been proved to be a
good compromise method in terms of approaching the
Pareto optimal front, the diversity of the solution, and
the well-converged [27]. Furthermore, this mechanism
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maintains the diversity of solutions in the archive by al‐

lowing only one solution to be displayed in each pre-

allocated hyper-box. In EMO-GOA optimization pro‐

cess, the new solutions generated are compared with

each member in the archive by using ε-dominance. First

of all, an identification array {B = (B1B2Bk )T } is as‐

signed to each member in the archive, and it is defined

as follows:

Bk( )f =

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

⎿ fk - f min
k

εk

⏌, for minimizing fk

⎾ fk - f min
k

εk

⏋, for maximizing fk

(13)

where k is the number of problem objectives, and f min
k is

the minimum value of the k-th objectie and εk is the al‐

lowable tolerance in the k-th objective.

Therefore, this mechanism divides the whole objec‐

tive space into grid clusters. The identification array Bx

of the new solution x and the identification array Ba of
each archive member a are calculated, respectively. This

new solution x is not accepted when the identification ar‐

ray Ba of any member a in the archive dominates Ba of

the new solution x. That is, the new solution x is domi‐

nated by the archive member ε-dominance. Instead, this

archive member a is deleted, and the new solution x is

accepted when the new solution Bx dominates the Ba of

any archive member a. If neither of the above two situa‐

tions occurs, it means that the new solution x and the

members in the archive are ε-non-dominance. Two cases

need to be analyzed. If the new solution shares a hyper-

box with an archive member, the general non-dominated

relationships are used to detect them first. If this new so‐

lution x dominates the archive member or it is non-

dominated by the archive member and is closer to the B

vector than the archive member, then the new solution x

is retained and the archive member is removed from the

archive. If the new solution x does not share the hyper-

box with any archive member, then the new solution x is

accepted [27].

The above analysis shows that each hyper-box is

occupied by only one hyper-box at the Pareto optimal

front. The ε -dominance concept have three advantages:

1) the maintenance of diversity; 2) consistency of the

size of the final archive and the total number of Pareto

optimal solutions; 3) the rapid convergence of Pareto op‐

timal solutions. The EMO-GOA is summarized in Algo‐

rithm 1.

5 Proposed NS-MOGOA Algorithm

In the proposed NS-MOGOA, a fast non-

dominated sorting (FNS) algorithm is used to replace the

calculation of non-dominated solutions in MOGOA, and

to improve the performance of MOGOA. The simulation

results of this FNS algorithm in NSGAII show that it

can preserve the diversity of solutions and better conver‐

gence. This FNS algorithm mainly includes two opera‐

tions: 1) Non-dominated ranking for the whole popula‐

tion; 2) Calculating the crowding distance of each indi‐

vidual [28]. The NS-MOGOA is summarized in Algo‐

rithm 2.

First, for the non-dominated ranking, there are two

sub-operations that need to be performed. The first one

is to count the number of dominating solutions p. It is

also called the dominating number Np; the second opera‐

tion saves the solutions dominated by this solution p. It

is worth noting that the solution with a dominance num‐

ber 0 is naturally called the first non-dominated level.

Algorithm 1: Summary of EMO-GOA

1: Load two ontologies O1 and O2

2: Construct solution space by similarity measure

3: Initialize maximum number of iterations(maxIter), cmax , cmin ,

the population Xi (i = 12n);

4: Calculate the fitness of each grasshopper by using Eqs. (11)

and (12).

5: Select the target T of population by using Eq.(2).

6: while (t < maxIter)

7: Update c using Eq. (8)

8: for each search individual

9: Normalize the distances between individuals in [1,4]

10: Update the position of the current individual by using

Eq. (5)

11: End for

12: for each individual

13: Evaluate individual by using Eqs. (11) and (12)

14: Update the archive by using the ε- dominance

technique.

15: End for

16: Select the target from the archive by using the roulette

wheel strategy.

17: Update target position and fitness.

18: t=t+1;

19: End while

20: End
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Next, the algorithm scans all solutions with Np=0 and

decrements their dominance numbers. When the domi‐

nance number of any solution q decreases by 0, the solu‐

tion q is saved in a list Γ. The members from list Γ are

considered the second non-dominant level. This opera‐

tion continues until all levels are recognized.

For the calculation of crowding distance, this opera‐

tion estimates the density around a particular solution in

the population. Specifically, this operation sorts the

population in ascending order according to each objec‐

tive value. For each objective, the solution with the larg‐

est and smallest function value is assigned an infinite

distance value. The intermediate solution is assigned a

difference v, which is equal to the difference between the

two neighboring solutions of this solution. This calcula‐

tion is continued until all target values are reached. As a

result, the crowding distance of each individual is the

sum of each object difference v of each solution. Further,

the crowding distance for the z-th solution is half the cir‐

cumference of the cuboid. The method is depicted in

Fig. 1.

In the selection process, the FNS algorithm prefer‐

entially selects the solution with a low non-dominated
rank when two solutions with different non-dominated
ranks. When these two solutions have the same ranking,
the one in a spacious area (that is, a less crowded area) is
selected first.

6 Experiments

In order to evaluate the performance of the improved
algorithms in performing ontology alignment tasks, three
experiments are performed. In the first experiment, the se‐
lection strategy for this target is studied. The second ex‐
periment compares traditional MOGOA with other com‐
monly used meta-heuristic algorithms. In the third ex‐
periment, two improved methods were compared with
the Ontology Alignment Evaluation Initiative (OAEI)
methods.

6.1 Evaluation Methods and Dataset

The result of ontology alignment is a set of correspon‐
dences, which are usually evaluated using three indicators:
precision, recall and F-measure from the Information Re‐
trieval field[29]. Precision represents the percentage of cor‐
rectly matched mappings in all mappings found. Recall
represents the percentage of correctly matched mappings
in all correct mappings from the reference alignment. It is
worth noting that if a system only retrieves the correct cor‐
respondence, the number of correct correspondence re‐
trieved is reduced, but the total number of retrieved corre‐
spondences will be significantly reduced, which leads to a
high precision. When the number of correct correspon‐
dences decreases, the recall becomes smaller. Therefore,
precision and recall are two conflicting indicators. In the ac‐
tual evaluation, it is not complete to evaluate the perfor‐
mance of a system by only applying the precision and the

Fig. 1 The method of calculating for the crowding distance

of the z-th solution
Note: The points linked by dashed lines indicate that they are at the same

non-dominant level

Algorithm 2: Summary of NS-MOGOA

1: Load two ontologies O1 and O2

2: Construct solution space by similarity measure

3: Initialize maximum number of iterations(maxIter), cmax, cmin,
the population Xi (i = 12n);

4: Calculate the fitness of each grasshopper by using Eqs. (11)

and (12).

5: Select the target T of population by using Eq.(2).

6: while (t < maxIter)

7: Update c using Eq. (8)

8: for each search individual

9: Normalize the distances between individuals in [1,4]

10: Update the position of the current individual by using

Eq. (5)

11: Evaluate individual by using Eqs. (11) and (12)

12: End for

13: Update the population by using the fast non-dominated

sorting technique.

14: Select the target from the individuals with lower

rankings by using the roulette wheel strategy.

15: Update target position and fitness.// Update current target

16: t=t+1;

17: End while

18: End
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recall, and they must be well combined[9]. For this reason,
the F-measure is used, which represents the weighted har‐
monic mean of precision and recall. In this experiment,
precision is expressed as Prec, recall is expressed as Rec ,
F-measure is represented as F1.

Precision=
|| RrelÇAret

|| Aret

(14)

Recall=
|| RrelÇAret

|| Rret

(15)

F-measure=2´
Precision´Recall
Precision+Recall

(16)

where Rrel is the relevant mappings given by OAEI, and

Aret is the mappings retrieved by the system.

In order to study the performance of the proposed

EMO-GOA and NS-MOGOA methods, twenty-three on‐

tology alignment tasks are performed, which come from

the OAEI. Since the maximum number of executions for

the OAEI-2016 systems is five, we performed each task in‐

dependently 5 times and calculated the average value for

the fairness. These test tasks are described in Table 1.

6.2 ParameterSettings

In order to maintain an ontology alignment system
with high accuracy and applicability to input different
ontologies, in this work, basic matchers with different
capabilities are used to calculate the similarity for a pair

of entities. The matcher means Jero measure[30], Vector
Space Model[31], WordNet[32], Levhenstein[33], Hierarchy
distance[15] and Numberedhierarchy distance[15], respec‐
tively. The parameter settings of each method are shown
in Table 2.

Table 1 Brief of benchmarks

Ontology

101

103

104

203

204

205

221

222

223

224

225

228

231

232

233

236

237

238

239

240

241

246

247

Brief description of characteristics

Conventional reference ontology

With other language generalization

With other language restriction

No entity names and comments

Different naming conventions

The labels with synonyms and comments suppressed

An ontology with no specialization

An ontology with flattened hierarchy

An ontology with expanded hierarchy

An ontology with no instance

An ontology with no instance

An ontology with no properties

Multiplying entities

An ontology with no hierarchy and instance

An ontology with no hierarchy and property

An ontology with no instance and property

An ontology with flattened hierarchy and no instance

An ontology with expanded hierarchy and no instance

An ontology with flattened hierarchy and no property

An ontology with expanded hierarchy and no property

An ontology with no hierarchy , property and instance

An ontology with flattened hierarchy and no property and instance

An ontology with expanded hierarchy and no property and instance
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6.3 Experiment and Comparision

6.3.1 Target selection strategy

The next position of the grasshopper is moved by

learning the current position, the target position and the

positions of all other grasshoppers. Therefore, the choice

of the target is an important component, which improves

the distribution of non-dominated solutions in the ar‐

chive and guides the grasshopper population toward

promising regions. However, since the choice of this tar‐

get needs to choose one from the Pareto optimal solution

set, the choice of this target is a challenge in multi-

objective MOGOA. In this work, we experimented with

two selection techniques: roulette wheel selection

(RWS) technique and square root distance (SRD) tech‐

nique [34]. Therefore, in our work, the roulette selection

strategy and the square root distance strategy are veri‐

fied to select targets from the archive. For roulette selec‐

tion, the author counts the number of neighbors of each

solution in the archive based on a fixed distance as

crowding distance. Subsequently, the members in the ar‐

chive are ranked according to the crowding distance.

The archive ranked is employed by the roulette selection

strategy to select a target. For the square root distance,

we calculated the distance between each member in the

archive and the current target by using Eq. (17). The

member with the smallest SRD is selected as the new tar‐

Table 2 Parameters configuration of each method

Algorithm

EMO-GOA

NS-MOGOA

MOGOA

SPEA2

GA

PSO

Name of parameter

The size of population (N)

Maximum number of iterations (maxIter)

The maximum value of c (cmax)

The minimum value of c (cmin)

The slack variable ε

The strength of attraction u;

The attractive length scale τ;

Has the same parameters as EMO-GOA except that there are no slack

variables ε

Has the same parameters as EMO-GOA except that there are no slack

variables ε

The size of population (N)

Maximum number of iterations (maxIter)

The probability of crossover (Pc)

The probability of mutation (Pm)

The crossover distribution index for SBX (σ)

The mutation distribution index for PM (H)

The size of population (N)

Maximum number of iterations (maxIter)

The mutation rate (Rm)

The crossover rate (Rc)

The size of population (N)

Maximum number of iterations (maxIter)

Learning factor (c1)

Learning factor (c2)

Inertia weight (w)

Value

30

100

1

0.004

0.001

0.5

1.5

30

100

0.9

0.1

20

20

30

100

0.2

0.9

30

100

2

2

1.4
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get.

SRD ( )x1x2 =∑
k = 1

2

|| fk( )x1 - fk( )x2 (17)

where k is the number of the problem objective.

The results of this experiment are shown in Table 3.

As Table 3 shown, the RWS strategy is better than the

SRD strategy in terms of matching accuracy and execu‐

tion time. Therefore, RWS strategy is used to select the

target that is suitable for ontology matching.

6.3.2 Comparison between proposed methods and the

other meta-heuristic algorithms

In order to investigate the performance of the pro‐

posed EMO-GOA and NS-MOGOA methods, we sum‐

marized the average F-measure and time, and compared

them with the classic single- and multi-objective meta-

heuristic algorithms. Table 4 shows the comparison re‐

sults with the multi-objective meta-heuristic algorithms.

For the average F1, this modified EMO-GOA and NS-

MOGOA achieve better alignment quality compared

with other multi-objective algorithms. The main reason

is that EMO-GOA maintains the diversity in the archive

by allowing only one solution in each pre-allocated

hyper-box of the Pareto optimal front. Another reason is

that it emphasizes non-dominated solutions. Compared

with the original MOGOA, the NS-MOGOA can main‐

tain a better solution diversity and better converge in the

obtained non-dominated front. The SPEA2[27] obtains a

poor alignment quality. Considering the precision for Eq.

Table 3 Comparison of target selection strategy

ID

101

103

104

203

204

205

221

222

223

224

225

228

231

232

233

236

237

238

239

240

241

246

247

Avg

SRD

Prec

1.000

1.000

1.000

1.000

1.000

0.914

1.000

1.000

0.983

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.988

0.967

0.941

1.000

0.967

0.912

0.986

F1

1.000

1.000

1.000

1.000

0.997

0.771

1.000

1.000

0.975

1.000

1.000

0.997

0.999

0.994

1.000

1.000

1.000

0.984

0.983

0.955

1.000

0.983

0.925

0.981

Rec

1.000

1.000

1.000

1.000

0.994

0.668

1.000

1.000

0.967

1.000

1.000

0.994

0.998

0.988

1.000

1.000

1.000

0.981

1.000

0.970

1.000

1.000

0.939

0.978

Time/ms

2144.2

2116.2

2135.4

1873.8

2091.4

2418.8

2061.6

2011.2

2219

2039.2

2026

1218.6

2037.6

2071.4

1164.6

1137.6

2055.2

2322

1413

1704.2

1150.8

1339.4

1635.8

1842.9

RWS

Prec

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.980

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.986

0.967

0.940

1.000

0.970

0.910

0.989

F1

1.000

1.000

1.000

1.000

0.990

0.850

1.000

1.000

0.980

1.000

0.999

1.000

1.000

1.000

1.000

1.000

1.000

0.983

0.983

0.955

1.000

0.980

0.925

0.985

Rec

1.000

1.000

1.000

1.000

0.988

0.740

1.000

1.000

0.980

1.000

0.998

1.000

1.000

1.000

1.000

1.000

1.000

0.981

1.000

0.970

1.000

1.000

0.939

0.982

Time/ms

2027.6

2002.2

2098

1830.8

2185.2

2340.6

2014.6

2007.8

2240.8

2025.4

2027.2

1153.8

2082.2

2056.4

1194.6

1170.2

2121.6

2304.6

1368.6

1649.8

1153

1372.4

1651.2

1829.5
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(14), if we select as many correct correspondences as

possible, that is, the precision is high, then only the most

likely correct correspondences will be selected. In this

case, the total number of correspondences selected by

the algorithm will be reduced, and the correct correspon‐

dences selected by the algorithm will be correspondingly

reduced, but the denominator is reduced faster so that

the precision becomes higher. The precision of EMO-

GOA and NS-MOGOA are 0.985 and 0.989, respec‐

tively, which shows that, in most cases, the performance

of the proposed methods to find the correct correspon‐

dence is enhanced.

Table 4 Comparison with other multi-objective metaheuristic algorithms on 23 matching tasks

ID

101

103

104

203

204

205

221

222

223

224

225

228

231

232

233

236

237

238

239

240

241

246

247

Avg

EMO-GOA

Prec

1.000

1.000

1.000

1.000

0.960

0.940

1.000

1.000

0.980

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.980

0.970

0.940

1.000

0.970

0.910

0.985

F1

1.000

1.000

1.000

1.000

0.960

0.890

1.000

1.000

0.980

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.980

0.980

0.960

1.000

0.980

0.930

0.985

Rec

1.000

1.000

1.000

1.000

0.960

0.850

1.000

1.000

0.970

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.980

1.000

0.970

1.000

1.000

0.940

0.986

NS-MOGOA

Prec

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.980

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.986

0.967

0.940

1.000

0.970

0.910

0.989

F1

1.000

1.000

1.000

1.000

0.990

0.850

1.000

1.000

0.980

1.000

0.999

1.000

1.000

1.000

1.000

1.000

1.000

0.983

0.983

0.955

1.000

0.980

0.925

0.985

Rec

1.000

1.000

1.000

1.000

0.988

0.740

1.000

1.000

0.980

1.000

0.998

1.000

1.000

1.000

1.000

1.000

1.000

0.981

1.000

0.970

1.000

1.000

0.939

0.982

MOGOA

Prec

1.000

1.000

1.000

1.000

0.920

0.850

1.000

1.000

0.980

1.000

1.000

1.000

1.000

0.996

1.000

1.000

1.000

0.980

0.970

0.940

1.000

0.970

0.910

0.979

F1

1.000

1.000

1.000

1.000

0.920

0.820

1.000

1.000

0.980

1.000

1.000

1.000

1.000

0.996

1.000

1.000

1.000

0.980

0.980

0.960

1.000

0.980

0.930

0.980

Rec

1.000

1.000

1.000

1.000

0.920

0.790

1.000

1.000

0.980

1.000

1.000

1.000

1.000

0.996

1.000

1.000

1.000

0.980

1.000

0.970

1.000

1.000

0.940

0.982

SPEA2

Prec

0.820

0.830

0.810

0.770

0.810

0.370

0.850

0.830

0.820

0.840

0.840

0.750

0.840

0.840

0.770

0.750

0.820

0.800

0.690

0.680

0.770

0.670

0.680

0.767

F1

0.846

0.870

0.850

0.810

0.860

0.380

0.890

0.870

0.860

0.880

0.880

0.860

0.880

0.890

0.870

0.860

0.860

0.840

0.810

0.780

0.870

0.790

0.770

0.829

Rec

0.870

0.920

0.900

0.850

0.910

0.390

0.940

0.920

0.910

0.930

0.930

1.000

0.930

0.930

1.000

1.000

0.920

0.890

0.970

0.910

1.000

0.950

0.900

0.907
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Comparison results with the single-objective al‐
gorithm in Table 5 shows that the proposed EMO-
GOA and NS-MOGOA outperform the GA-based and
PSO-based methods. The main reason is that multi-
objective optimization algorithms can maintain a bet‐
ter solution diversity and better converge in the ob‐
tained non-dominated front. Furthermore, the multi-
objective optimization algorithm has better perfor‐
mance than single-objective for ontology alignment
problem.

Table 6 shows the average running time of each
algorithm. It is clear that the time of the proposed

EMO-GOA is much less than NS-MOGOA, MOGOA,
SPEA2, and GA. The main reason is that EMO-GOA
employs the technology of ε-dominance to update the
archive. This mechanism can reduce the time to con‐
verge to the Pareto optimal solution set and find a
high-quality alignment. Although the running time of
NS-MOGOA is higher than that of EMO-GOA, it is
lower than MOGOA. Furthermore, this NS-MOGOA
modified by employing a fast non-dominated solution
sorting can speed up the convergence of non-
dominated solutions and better maintain the diversity
of solutions.

Table 5 Comparison results with other single-objective metaheuristic algorithms on 23 matching tasks

ID

101

103

104

203

204

205

221

222

223

224

225

228

231

232

233

236

237

238

239

240

241

246

247

Avg

EMO-GOA

Prec

1.000

1.000

1.000

1.000

0.960

0.940

1.000

1.000

0.980

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.980

0.970

0.940

1.000

0.970

0.910

0.985

F1

1.000

1.000

1.000

1.000

0.960

0.890

1.000

1.000

0.980

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.980

0.980

0.960

1.000

0.980

0.930

0.985

Rec

1.000

1.000

1.000

1.000

0.960

0.850

1.000

1.000

0.970

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.980

1.000

0.970

1.000

1.000

0.940

0.986

NS-MOGOA

Prec

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.980

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.986

0.967

0.940

1.000

0.970

0.910

0.989

F1

1.000

1.000

1.000

1.000

0.990

0.850

1.000

1.000

0.980

1.000

0.999

1.000

1.000

1.000

1.000

1.000

1.000

0.983

0.983

0.955

1.000

0.980

0.925

0.985

Rec

1.000

1.000

1.000

1.000

0.988

0.740

1.000

1.000

0.980

1.000

0.998

1.000

1.000

1.000

1.000

1.000

1.000

0.981

1.000

0.970

1.000

1.000

0.939

0.982

GA

Prec

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.980

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.990

0.960

0.970

1.000

0.960

0.940

0.991

F1

0.970

0.740

0.970

0.970

0.940

0.710

0.830

0.950

0.860

0.920

0.850

0.997

0.999

0.850

0.810

0.997

0.970

0.890

0.950

0.900

0.920

0.950

0.900

0.906

Rec

0.950

0.600

0.950

0.950

0.90

0.560

0.720

0.92

0.79

0.860

0.770

0.994

0.998

0.740

0.760

0.994

0.950

0.820

0.930

0.850

0.850

0.940

0.870

0.855

PSO

Prec

1.000

1.000

1.000

1.000

1.000

0.870

1.000

0.970

0.970

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.970

0.986

0.890

0.940

1.000

0.880

0.890

0.972

F1

1.000

1.000

1.000

1.000

1.000

0.870

1.000

0.970

0.970

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.970

0.986

0.900

0.950

1.000

0.890

0.900

0.974

Rec

1.000

1.000

1.000

1.000

1.000

0.860

1.000

0.970

0.970

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.970

0.986

0.920

0.960

1.000

0.910

0.920

0.977
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Table 6 Comparison of the time with MOGOA, SPEA2, GA and PSO

ms

ID

101

103

104

203

204

205

221

222

223

224

225

228

231

232

233

236

237

238

239

240

241

246

247

Avg

EMO-GOA

1 733.4

1 940.6

1 708.2

1 494.2

1 673

1 925.4

1 788.8

1 745.2

1 853

1 671.2

1 657.6

1 012.2

1 709.2

1 644.2

1 017

1 017.4

1 717.2

1 877.6

1 179

1 425.8

1 038.8

1 173

1 502.8

1 543.69

NS-MOGOA

2 027.6

2 002.2

2 098

1 830.8

2 185.2

2 340.6

2 014.6

2 007.8

2 240.8

2 025.4

2 027.2

1 153.8

2082.2

2 056.4

1 194.6

1 170.2

2 121.6

2 304.6

1 368.6

1 649.8

1 153

1 372.4

1 651.2

1 829.50

MOGOA

2 244.2

2 416

2 346

2 099

2 276.2

2 246.6

2 144.8

2 302.2

2 276.2

2 287.2

2 061.4

1 240.2

2 193

2 288.2

1 155.8

1 427.8

2 046.4

2 403

1 632.4

1 807.4

1 153.6

1 542.6

1 836.2

1 975.06

SPEA2

1 760.4

1 850.6

1 803.6

1 814

1 777.4

1 748.4

1 726.2

1 734.2

1 932.6

1 813.8

1 803

1 398

1 792

1 794.6

1 424.2

1 377.6

1 781

1 868.6

1 539.4

1 715.6

1 348

1 518

1 613

1 692.79

GA

2 152.6

2 063.2

2 093.6

2 018.4

2 079.6

2 101.6

2 433.8

1 982.6

1 961

1 821.8

1 781.2

1 059.4

1 945.4

1966

1 161

1 128

2 123.2

2 227.4

1 179.8

1 475.2

1 139.2

1 323.4

1 498.2

1 770.24

PSO

1 708.6

1 613.2

1 733.6

1 549.6

1 716.2

1 689.8

1 727.6

1 709.2

1 919

1 735

1 742

1 092.2

1 663.4

1 739.2

1 032.6

1 046.4

1 682

1 928.6

1 127.6

1 359.2

1 036.2

1 126

1 379.4

1 524.2

6.3.3 Comparison between proposed methods and the

other OAEI methods

In order to further study the performance of the pro‐

posed methods, the top system AML[35], LogMap[36] and

XMap[37] in the OAEI-2016 competition are selected. It

is worth noting that there are no results of tasks 103,

104, 203, 204, 205 and 231 on the OAEI official web‐

site. Therefore, these results are removed from our ex‐

perimental results. Table 7 is the comparision of the pro‐

posed method with the top system of OAEI competition,

and the results show that the proposed EMO-GOA and

NS-MOGOA methods significantly improve the quality

of alignment.

7 Conclusion

The improvement of multi-objective evolutionary
algorithms usually considers the two goals of maintain‐
ing the diversity of non-dominated solution sets and con‐
verging to the true Pareto optimal front. However, it is
often ignored to achieve these two goals with rapid cal‐
culation. In this paper, the fast calculation manner for
multi-objective meta-heuristic algorithms to align ontol‐
ogy are considered. Two different grasshopper optimiza‐
tion algorithms (GOA) are proposed for multi-objective
ontology alignment. The performance of the proposed
two methods is evaluated on the benchmark dataset. The
results show that the proposed two methods outperform
other meta-heuristic-based methods in terms of align‐
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ment quality. In particular, the EMO-GOA method

achieves the best performance. For the running time,

compared with SPEA2, GA, PSO, despite the long ex‐

ecution time of NS-MOGOA, the alignment quality has

been improved. This EMO-GOA is only 0.019 49 sec‐

onds higher than PSO. It can be concluded that the two

proposed multi-objective ontology alignment methods

are successful for improving execution efficiency. In fu‐

ture work, we plan to further improve the performance

of the proposed two methods in large ontology align‐

ment.
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