Note on the Number of Solutions of Cubic Diagonal Equations over Finite Fields

HU Shuangnian¹, WANG Shihan², LI Yanyan³, NIU Yujun¹
1. School of Mathematics and Physics, Nanyang Institute of Technology, Nanyang 473004, Henan, China;
2. Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, Guangdong, China;
3. School of Information Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan, China

© Wuhan University 2023

Abstract: Let F_q be the finite field, $q=p^k$, with p being a prime and k being a positive integer. Let F_q^* be the multiplicative group of F_q, that is $F_q^*=F_q\setminus\{0\}$. In this paper, by using the Jacobi sums and an analog of Hasse-Davenport theorem, an explicit formula for the number of solutions of cubic diagonal equation $x_1^3+x_2^3+\cdots+x_n^3=c$ over F_q is given, where $c\in F_q^*$ and $p=1\pmod{3}$. This extends earlier results.

Key words: finite field; rational point; diagonal equations; Jacobi sums

CLC number: O156

0 Introduction

Let F_q be the finite field, $q=p^k$, with p being a prime and k being a positive integer. Let F_q^* be the multiplicative group of F_q, that is $F_q^*=F_q\setminus\{0\}$. Counting the number $N(f=0)$ of zeros $(x_1,x_2,\cdots,x_n)\in F_q^*$ of the equation $f(x_1,x_2,\cdots,x_n)=0$ is an important and fundamental topic in number theory and finite field. From Refs. [1,2], we know that there exists an explicit formula for $N(f=0)$ with degree $\deg f\leq 2$. But generally speaking, it is much difficult to give an explicit formula for $N(f=0)$.

Let k_1,k_2,\cdots,k_n be positive integers. A diagonal equation is an equation of the form $a_1x_1^k+\cdots+a_nx_n^k=c$ with coefficients $a_1,\cdots,a_n\in F_q^*$ and $c\in F_q^*$. Counting the number of solutions $(x_1,x_2,\cdots,x_n)\in F_q^*$ of the diagonal equation is a difficult problem. The special case where all the k_i are equal has extensively been studied (see, for instance, Refs. [3-14]). This is the example chosen by Weil[10] to illustrate his renowned conjecture on projective varieties over finite fields.

For any $c\in F_q^*$, let $A_c(0)$ denote the number of zeros $(x_1,x_2,\cdots,x_n)\in F_q^*$ of the following diagonal equation $x_1^k+\cdots+x_n^k=c$ over F_q. In 1977, Chowla et al.[10] initiated the investigation of $A_c(0)$ over F_q. When $q=p$, it is easy to see that $A_c(0)=p^{k-1}a_1^k$ if $p\not\equiv 2\pmod{3}$. However, when $p=1\pmod{3}$, the situation becomes complicated.
Chowla et al. got that the generating function \(\sum_{n=1}^{\infty} A_n(0)x^n \) is a rational function of \(x \). In 1979, Myerson extended the result in Ref. [3] to the field \(F_q \). When \(q = p^r \), with \(p^r = -1 \) (mod \(d \)) for a divisor \(r \) of \(t \) and \(d|q-1 \), Wolfmann gave an explicit formula of the number of solutions of the equation \(a_1x_1^n + a_2x_2^n + \cdots + a_dx_d^n = c \) over \(F_q \) in 1992, where \(a_1, \ldots, a_d \in F_q^* \) and \(c \in F_q^* \). In 2018, Zhang and Hu determined the number of solutions of the equation \(a_1x_1^n + a_2x_2^n + \cdots + a_dx_d^n = c \) over \(F_{p^m} \) with \(c \in F_{p^m}^* \) and \(p = 1 \) (mod 3). In 2021, by using the generator of \(F_{p^m}^* \), Hong and Zhu gave the generating functions \(\sum_{n=1}^{\infty} A_n(0)x^n \). In 2022, Ge et al. studied the generating functions in a different way.

In this paper, we consider the problem of finding the number of solutions of the diagonal cubic equation \(x_1^3 + x_2^3 + \cdots + x_n^3 = c \) over \(F_{p^m} \) where \(q = p^r \) and \(c \in F_{p^m}^* \).

If \(p = 3 \) and \(k \) is an integer, or \(p = 2 \) (mod 3) and \(k \) is an odd integer, then \(\text{gcd}(3, q-1) = 1 \). It follows that (see Ref. [2], p.105)

\[
N(x_1^3 + x_2^3 + \cdots + x_n^3 = c) = N(x_1 + x_2 + \cdots + x_n = c) = q^n-1
\]

with \(c \in F_{p^m}^* \).

If \(p = 2 \) (mod 3) and \(k \) is an even integer, Hu and Feng presented an explicit formula for \(N(x_1^3 + x_2^3 + \cdots + x_n^3 = c) \) by using the Theorem 1 of Ref. [11]. However, the explicit formula for \(N(x_1^3 + x_2^3 + \cdots + x_n^3 = c) \) is still unknown when \(p = 1 \) (mod 3) and \(c \in F_{p^m}^* \). In this paper, we solve this problem by using Jacobi sums and an analog of Hasse-Davenport theorem.

The main result of this paper can be stated as follows.

Theorem 1 Let \(k \) be a positive integer and \(q = p^r \) with the prime \(p = 1 \) (mod 3). Let \(\chi \) (resp. \(\alpha \)) be a generator of \(F_q^* \) (resp. \(F_p^* \)). Let \(\lambda \) (resp. \(\chi^j \)) be a multiplicative character of order 3 over \(F_q \) (resp. \(F_p \)) given by \(\lambda(a) = -1 + i\sqrt{3} \) (resp. \(\chi(a) = -1 + i\sqrt{3} / 2 \)). Let \(u \) and \(v \) be the integers uniquely determined by

\[
u^3 + 3v^3 = p, \quad u = -1 \text{ (mod 3)}
\]

and

\[
3v \equiv 2u(2\alpha^{u-3} + 1) \text{ (mod } p)\]

Set

\[
\pi = \chi(2(u + iv\sqrt{3})), \quad \bar{\pi} = \chi^2(2(u - iv\sqrt{3})
\]

Let \(N \) denote the number of rational points of \(x_1^n + x_2^n + \cdots + x_n^n = c \) over \(F_q \). Then

\[
N = q^{n-1} - (-1)^{k-1}q^{-3}(E_1 + E_2 + E_3)
\]

where

\[
E_1 = (-1)^k \sum_{j=0}^{n-1} \pi^{a^{j+3} \bar{\pi}^{j-3}} \sum_{j=0}^{n-1} \pi^{a^{j+3} \bar{\pi}^{j-3}}(n, j)
\]

and

\[
E_2 = \lambda(c) \sum_{j=0}^{n-1} \pi^{a^{j+3} \bar{\pi}^{j-3}} \sum_{j=0}^{n-1} \pi^{a^{j+3} \bar{\pi}^{j-3}}(n, j)
\]

This paper is organized as follows. In Section 1, we present several basic concepts and give some preliminary lemmas. In Section 2, we prove Theorem 1. In Section 3, we supply an example to illustrate the validity of our result.

1 Preliminary Lemmas

In this section, we present some useful lemmas that are needed in the proof of Theorem 1. We begin with two definitions.

Definition 1 Let \(p \) be a prime number and \(q = p^r \) with \(k \) being a positive integer. For any element \(a \in F_q \), the norm of \(a \) relative to \(F_p \) is defined by

\[
N_{F_q/F_p}(a) = a\alpha^r \alpha^{-r} = a^{p-1}
\]

For the simplicity, we write \(N(a) \) for \(N_{F_q/F_p}(a) \). For any \(a \in F_{p^m}^* \), it is clear that \(N(a) \in F_{p^m}^* \). Furthermore, if \(\alpha \) is a primitive element of \(F_{p^m}^* \), then \(N(a) \) is a primitive element of \(F_{p^m}^* \).

Definition 2 Let \(\lambda_1, \ldots, \lambda_n \) be \(n \) multiplicative characters of \(F_p^* \). The Jacobi sum \(J(\lambda_1, \ldots, \lambda_n) \) is defined by

\[
J(\lambda_1, \ldots, \lambda_n) = \sum_{\gamma_1 \cdots \gamma_n} \lambda_1(\gamma_1) \cdots \lambda_n(\gamma_n)
\]

where the summation is taken over all \(n \)-tuples \((\gamma_1, \ldots, \gamma_n) \) of elements of \(F_p^* \) with \(\gamma_1 + \cdots + \gamma_n = 1 \).

Let \(\chi \) be a multiplicative character of \(F_q^* \). Then \(\gamma \) can be lifted to a multiplicative character \(\lambda \) of \(F_q^* \) by setting \(\lambda(a) = \chi(N(a)) \). The characters of \(F_q^* \) can be lifted to the characters of \(F_{p^m}^* \), but not all the characters of \(F_q^* \) can be obtained by lifting a character of \(F_{p^m}^* \). The following lemma tells us when \(p = 1 \) (mod 3), then any multiplica-
tive character λ of order 3 of F_q can be lifted by a multiplicative character of order 3 of F_p.

Lemma 1[1] Let F_p be a finite field and F_q be an extension of F_p. A multiplicative character λ of F_q can be lifted by a multiplicative character χ of F_p if and only if λ^{q-1} is trivial.

The following lemma provides an important relationship between the Jacobi sums in F_q and the Jacobi sums in F_p.

Lemma 2[2] Let χ_i, \cdots, χ_s be n multiplicative characters of F_p, not all of which are trivial. Suppose χ_1, \cdots, χ_s are lifted to characters $\lambda_1, \cdots, \lambda_s$, respectively, of the finite extension field E of F_p with $[E:F_p] = k$. Then

$$J(\lambda_1, \cdots, \lambda_s) = (-1)^{k-1} J(\chi_1, \cdots, \chi_s)^k.$$

Lemma 3[3] Let $p \equiv 1(\text{mod } 3)$ be a prime and let α be a generator of F_p'. Let χ be a multiplicative character of order 3 over F_p given by $\chi(N(a)) = -1 + i \sqrt{3} / 2$.

Let n_1 and n_2 be nonnegative integers with $n_1 + n_2 \geq 1$. Set

$$J_{n_1,n_2} = J(\chi, \cdots, \chi, \chi, \cdots, \chi).$$

Then

$$J_{n_1,n_2} = \begin{cases} -\pi^{2(n_1 + n_2 - 3)b} \pi(n_1 + 2n_2 - 3b), & \text{if } n_1 + 2n_2 \equiv 0(\text{mod } 3), \\ \pi^{2(n_1 + n_2 - 2b)(n_1 + 2n_2 - 3b)}, & \text{if } n_1 + 2n_2 \equiv 1(\text{mod } 3), \\ \pi^{2(n_1 + n_2 - b)(n_1 + 2n_2 - 2b)}, & \text{if } n_1 + 2n_2 \equiv 2(\text{mod } 3), \end{cases}$$

where π and $\bar{\pi}$ are defined as in Theorem 1.

The following lemma gives an explicit formula for the number of solutions of the diagonal equation in terms of Jacobi sums.

Lemma 4[4] Let k_1, \cdots, k_s be positive integers, $a_1, \cdots, a_s, c \in F_p'$. Set $d_i = \gcd(k_i, q - 1)$, and let λ be a multiplicative character on F_q, of order d_i for $i = 1, \cdots, s$. The number N of solutions of the equation $a_1x_1^d + \cdots + a_sx_s^d = c$ is given by

$$N = q^{-1} + \sum_{j=1}^{d_i - 1} \lambda_j(c)J_{n_i,n_i} \left(\frac{n}{n_1} \right).$$

2 Proof of Theorem 1

In this section, we give the proof of Theorem 1.

Proof of Theorem 1 Let λ be a multiplicative character on F_q of order 3 with $\lambda(a) = -1 + i \sqrt{3} / 3$. Since $c \in F_q$, by using Lemma 3, we deduce that the number N of solutions $x_1^3 + x_2^3 + \cdots + x_s^3 = c$ in F_q is given by

$$N = q^{-1} + \sum_{j=1}^{d_i - 1} \lambda_j(c)J_{n_i,n_i} \left(\frac{n}{n_1} \right).$$

For integers $0 \leq n_1 \leq n$, $0 \leq n_2 \leq n$ and $n_1 + n_2 = n$, we need to calculate the sum over j_1, \cdots, j_s with n_1 of the j_i's equal to 1 and n_2 of the j_i's equal to 2. That is

$$j_1 + j_2 + \cdots + j_n = n_1 + 2n_2$$

and

$$J(\lambda_1, \cdots, \lambda_s) = J(\lambda_1, \cdots, \lambda_s, \lambda_1^2, \cdots, \lambda_s^2).$$

Since λ is a multiplicative character on F_q of order 3 and $p \equiv 1(\text{mod } 3)$, thus λ^{q-1} is trivial. Then from Lemma 1, we can deduce that the cubic multiplicative character λ of F_q can be lifted by a cubic multiplicative character χ of F_p. By using Lemma 2 and Lemma 3, one get

$$J(\lambda, \lambda, \lambda, \lambda, \lambda) = (-1)^{k-1} J(\chi, \cdots, \chi, \chi, \cdots, \chi)^k.$$

So that

$$N = q^{r-1} + (-1)^{k-1} \sum_{n_1,n_2} \lambda^{n_1+2n_2}(c)J_{n_i,n_i} \left(\frac{n}{n_1} \right).$$

Using Lemma 3 for the value of J_{n_i,n_i}, considering the three cases $n_1 + 2n_2 = 0, 1, 2(\text{mod } 3)$ separately, we obtain

$$\sum_{n_1,n_2} \lambda^{n_1+2n_2}(c)J_{n_i,n_i} \left(\frac{n}{n_1} \right) = \sum_{n_1,n_2} (-1)^{k} \pi^{4(n_1 + n_2 - 2b)} \pi^{4(n_1 + 2n_2 - 3b)} \left(\frac{n}{n_1} \right) = E_1,$$

and

$$\sum_{n_1,n_2} \lambda^{n_1+2n_2}(c)J_{n_i,n_i} \left(\frac{n}{n_1} \right) = \sum_{n_1,n_2} \pi^{4(n_1 + n_2 - 2b)} \pi^{4(n_1 + 2n_2 - 3b)} \left(\frac{n}{n_1} \right) = E_2.$$

Then the desired result

$$N = q^{r-1} + (-1)^{k-1}(E_1 + E_2 + E_3)$$

follows immediately.
3 Example

In this section, we present an example to demonstrate the validity of our result Theorem 1.

Example 1 Let \(\alpha \) be a generator of \(F_7^* \). Now we use Theorem 1 to obtain the number of zeros of the cubic equation:

\[
x_1^3 + x_2^3 + x_3^3 + x_4^3 = \alpha.
\]

It is easy to see that \(3 \) is a generator of \(F_7^* \), and then we obtain \(N(\alpha) = \alpha^{(7^2 - 7 - 1)} = 3 \). That means

\[
\alpha^{(7^2 - 7 - 1)} = (\alpha^{(7^2 - 7 - 1)})^2 = 3^2.
\]

Since \(3 \equiv 2 \pmod{7} \), then the integers \(u \) and \(v \) are determined by \(u^2 + 3v^2 = 7 \), \(u = -1 \pmod{3} \) and \(3v = u(2 \cdot 3^2 + 1) \pmod{7} \), that is

\[
u = 2, \quad v = 1.
\]

Thus

\[
\pi = \chi(2)(u + iv\sqrt{3}) = \chi(3^2)(u + iv\sqrt{3}) = \left(\frac{-1 + i\sqrt{3}}{2}\right)(2 + i\sqrt{3}) = \frac{1 - i3\sqrt{3}}{2}
\]

and

\[
\hat{\pi} = \frac{1 + i3\sqrt{3}}{2}.
\]

Further,

\[
E_1 = (-1)^3 \sum_{j \equiv 1 \pmod{3}} \pi^{2j + 4 - 23\beta} \frac{4}{j} = 6\pi\hat{\pi} = 294,
\]

\[
E_2 = \lambda(\alpha) \sum_{j \equiv 1 \pmod{3}} \pi^{2j + 4 - 23\beta} \frac{4}{j} = \lambda(\alpha)(4\pi^2\hat{\pi}^4 + \pi^2\hat{\pi}^2)
\]

\[
= \frac{931 - 11813\sqrt{3}}{2},
\]

and

\[
E_3 = \lambda(\alpha^2) \sum_{j \equiv 1 \pmod{3}} \pi^{2j + 4 - 23\beta} \frac{4}{j} = \lambda(\alpha^2)(\pi^2\hat{\pi}^4 + 4\pi\hat{\pi}^2)
\]

\[
= \frac{931 + 11813\sqrt{3}}{2}.
\]

Thus by Theorem 1, we get

\[
N(x_1^3 + x_2^3 + x_3^3 + x_4^3 = \alpha) = q^3 - (E_1 + E_2 + E_3) = 116424.
\]

References

