Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 26, Number 6, December 2021
Page(s) 489 - 494
DOI https://doi.org/10.1051/wujns/2021266489
Published online 17 December 2021
  1. Zhang H G, Han W B, Lai X J, et al. Survey on cyberspace security [J]. Science China Information Sciences, 2015, 58(11): 1-43. [NASA ADS] [Google Scholar]
  2. Wang Y L, Xu Q L. Principle and research progress of quantum computation and quantum cryptography [J]. Journal of Computer Research and Development, 2020, 57(10): 2015-2026. [Google Scholar]
  3. Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring [C] //Proceedings of 35th Annual Symposium on Foundations of Computer Science. Washington D C: IEEE Computer Society Press, 1994: 124-134. [CrossRef] [Google Scholar]
  4. Smolin J A, Smith G, Vargo A. Oversimplifying quantum factoring [J]. Nature, 2013, 499(7457): 163-165. [CrossRef] [PubMed] [Google Scholar]
  5. Peng X H, Liao Z Y, Xu N Y, et al. Quantum adiabatic algorithm for factorization and its experimental implementation [J]. Physical Review Letters, 2008, 101(22): 220405. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  6. Xu N Y, Zhu J, Lu D W, et al.Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system [J]. Physical Review Letters, 2012, 108(13): 130501. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  7. Wang C, Yao H N, et al. Progress in quantum computing cryptography attacks [J]. Chinese Journal of Computers, 2020, 43(9): 1691-1707(Ch). [Google Scholar]
  8. Geller M R, Zhou Z Y. Factoring 51 and 85 with 8 qubits [J]. Scientific Reports, 2013, 3(3023): 1-5. [NASA ADS] [Google Scholar]
  9. Wang Y H, Zhang H G, Wu W Q, et al. Quantum algorithms for breaking RSA based on phase estimation and equation solving [J]. Chinese Journal of Computers, 2017, 40(12): 2687-2699(Ch). [Google Scholar]
  10. Wang Y H, Zhang H G, Wang H Z. Quantum polynomial-time fixed-point attack for RSA [J]. China Communications, 2018, 15(2): 25-32. [NASA ADS] [CrossRef] [Google Scholar]
  11. Wang Y H, Yan S Y, Zhang H G. A new quantum algorithm for computing RSA ciphertext period [J]. Wuhan University Journal of Natural Sciences, 2017, 22(1): 68-72. [CrossRef] [MathSciNet] [Google Scholar]
  12. Lawson T. Odd orders in Shor’s factoring algorithm [J]. Quantum Information Process, 2015, 14(3): 831-838. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  13. Dattani N S, Bryans N. Quantum factorization of 56153 with only 4 qubits. [EB/OL]. [2021-05-10]. http://arxiv.org/pdf/1411.6758, 27, 2014. [Google Scholar]
  14. Peng W C, Wang B N, Hu F, et al. Factoring larger integers with fewer qubits via quantum annealing with optimized parameters [J]. Science China: Physics, Mechanics & Astronomy, 2019, 62(6): 5-12(Ch). [Google Scholar]
  15. Yan S Y. Quantum Computational Number Theory [M]. Berlin: Springer-Verlag, 2015. [CrossRef] [MathSciNet] [Google Scholar]
  16. Nielson M A, Chuang I L. Quantum Computation and Quantum Information [M]. Cambridge: Cambridge University Press, 2000. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.