Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 1, March 2022
Page(s) 77 - 84
DOI https://doi.org/10.1051/wujns/2022271077
Published online 16 March 2022
  1. Yang Z G. Process and Principal of Membrane Science and Technology [M]. Shanghai: East China University of Science and Technology Press, 2009(Ch). [Google Scholar]
  2. Zhao S F, Liao Z P, Fane A, et al. Engineering antifouling reverse osmosis membranes: A review [J]. Desalination, 2021, 499: 114857. [Google Scholar]
  3. Liu Y P, Li X J. Study on RO membrane fouling in landfill leachate treatment [J]. Journal of Environmental Engineering, 2007, 1(7): 101-105(Ch). [Google Scholar]
  4. Lou M L. Study on Membrane Fouling by Typical Pollutants and Membrane Cleaning [D]. Tianjin: Tianjin Institute of Urban Construction, 2010(Ch). [Google Scholar]
  5. Cheng W, Quan X J, Huang X X, et al. Enhancement of micro-filtration performance for biologically-treated leachate from municipal solid waste by ozonation in a micro bubble reactor [J]. Separation and Purification Technology, 2018, 207: 535-542. [CrossRef] [Google Scholar]
  6. Xiao S Q. Reverse osmosis membrane fouling mechanism and prevention and control measures [J]. Guangdong Chemical Industry, 2016, 43(21): 119-120+123(Ch). [Google Scholar]
  7. Luo M L, Li L, Jiang R. Research on the pollution of RO membrane by BSA [J]. Industrial Water Treatment, 2018, 38(4): 53-56(Ch). [Google Scholar]
  8. Ren X, Song K, Xiao Y, et al. Effective treatment of spacer tube reverse osmosis membrane concentrated leachate from an incineration power plant using coagulation coupled with electrochemical treatment processes [J]. Chemosphere, 2020, 244: 125479. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  9. Zhou D Y, Wang W, Qi Q. Analysis on reverse osmosis membrane fouling and its on-line cleaning [J]. Cleaning World, 2016, 32(7): 22-26(Ch). [Google Scholar]
  10. Zhao B. Analysis of reverse osmosis membrane chemical cleaning [J]. Chemical Engineering Design Communications, 2020, 46(10): 2(Ch). [Google Scholar]
  11. Baatiyyah H. The Impact of Chemical Cleaning on Separation Efficiency and Properties of Reverse Osmosis Membrane [D]. Jeddah: King Abdullah University of Science and Technology, 2018. [Google Scholar]
  12. Peng N, Wang K F, Liu G G, et al. Quantifying interactions between propranolol and dissolved organic matter (DOM) from different sources using fluorescence spectroscopy [J]. Environmental Science and Pollution Research, 2014, 21(7), 5217-5226. [CrossRef] [PubMed] [Google Scholar]
  13. Ouyang E M, Zhang X H, Wang W. Study on the effects of organic removal by traditional purification process with three-dimensional excitation emission matrix fluorescence spectroscopy [J]. Spectroscopy and Spectral Analysis, 2007, 27(7): 1373-1376(Ch). [Google Scholar]
  14. Lv H G, Ouyang E M, Zheng Z H, et al. Three dimensional fluorescence spectroscopy for water quality determination in water treatment plant [J]. China Water & Wastewater, 2005, 21(3): 91-93(Ch). [Google Scholar]
  15. Guo W D, Huang J P, Hong H S, et al. Resolving excitation emission matrix spectroscopy of estuarine CDOM with parallel factor analysis and its application in organic pollution monitoring [J]. Environmental Science, 2010, 31(6): 1419-1427(Ch). [Google Scholar]
  16. Wu J, Cui S, Xie C B, et al. Fluorescence fingerprint transformation of municipal wastewater caused by aerobic treatment [J]. Spectroscopy and Spectral Analysis, 2011, 31(12): 3302-3306(Ch). [Google Scholar]
  17. Peiris R H, Budman H, Moresoli C, et al. Understanding fouling behaviour of ultrafiltration membrane processes and natural water using principal component analysis of fluorescence excitation-emission matrices [J]. Journal of Membrane Science, 2010, 357(1-2): 62-72. [CrossRef] [Google Scholar]
  18. Zhu H T, Wen X H, Huang X. Membrane organic fouling and the effect of pre-ozonation in microfiltration of secondary effluent organic matter [J]. Journal of Membrane Science, 2010, 352(1-2): 213-221. [NASA ADS] [CrossRef] [Google Scholar]
  19. Fan L, Nguyen T, Roddick F A, et al. Low-pressure membrane filtration of secondary effluent in water reuse: Pre- treatment for fouling reduction [J]. Journal of Membrane Science, 2008, 320(1-2): 135-142. [CrossRef] [Google Scholar]
  20. Han R B. Removal of Micro-polluted Organic Matter from Source Water by Membrane Bioreactor Combined with Powdered Activated Carbon [D]. Harbin: Harbin Institute of Technology, 2013(Ch). [Google Scholar]
  21. Shi J. Based on the 3D Fluorescence Spectra of Sewage Treatment Plant Water Quality Quick Analysis [D]. Yangzhou: Yangzhou University, 2011(Ch). [Google Scholar]
  22. Liu W, Wu Y F. Fluorescence spectrum analysis of photocatalytic degradation of fulvic acid [C]// The 2010 Annual Meeting of the National Water Supply Advanced Treatment Research Association of the Water Industry Branch of the Chinese Civil Engineering Society. Shanghai: The Water Industry Branch of the Chinese Civil Engineering Society, 2010: 494- 501(Ch). [Google Scholar]
  23. Zhao Q L, Jia T, Wei L L, et al. Fluorescence characterization of the reactivity of THMs precursors in secondary effluent [J]. China Environmental Science, 2009, 29(11): 1164-1170(Ch). [Google Scholar]
  24. Han L. Study on Fouling Mechanism and Control Technology of Leachate Treated by Reverse Osmosis Membrane [D]. Chongqing: Chongqing University, 2012(Ch). [Google Scholar]
  25. Meng F, Chae S R, Drews A, et al. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material [J]. Water Research, 2009, 43(6): 1489-1512. [CrossRef] [PubMed] [Google Scholar]
  26. Li S, Duan L, Zhou B H, et al. Effect of soluble microbial products on membrane fouling in MBR at various solids retention times [J]. Chinese Journal of Environmental Engineering, 2015, 9(6): 2731-2738(Ch). [Google Scholar]
  27. Zhang Y J, Sun L H, Chen X R, et al. Adsorption of powdered activated carbon and activated coke towards organics removal by ultra-filtration in reclaimed wastewater treatment [J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3099-3105(Ch). [Google Scholar]
  28. Cui H R, Cai X M, Qin X, et al. Hydrogen peroxide catalytic wet oxidation of leachate and the spectroscopic analysis of dissolved organic matters [J]. Acta Scientiae Circumstantiae, 2015, 35(9): 2930-2935. [Google Scholar]
  29. Baun D L, Christensen T H. Speciation of heavy metals in landfill leachate: A review [J]. Waste Management & Research, 2004, 22(1): 3-23. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  30. Lou Z Y, Zhao Y C. Gradient size-fractionation and characterization of leachate by micro-membrane filter [J]. Nonferrous Metals Engineering & Research, 2009, 30(6): 69-71. [Google Scholar]
  31. Liu X G. Study on New Type of Polyacrylamide Modified Bentonite Impermeable Materials [D]. Shenyang: Northeastern University, 2010(Ch). [Google Scholar]
  32. Ding Z. Study on Component Characteristics of Landfill Leachate and Microwave Advanced Oxidation Treatment [D]. Xi’an: Chang’an University, 2009(Ch). [Google Scholar]
  33. Xu Y D, Yue D B, Nie Y F. The size distribution for pollutants in landfill leachate and its implications [J]. Techniques and Equipment for Environmental Pollution Control, 2006, 7(5): 16-21(Ch). [Google Scholar]
  34. Zhang Y F. Study on Water Quality of Leachate from Garbage Landfill Site and Garbage Incineration Plant in Chongqing’s Main City Zone [D]. Chongqing: Southwest University, 2008(Ch). [Google Scholar]
  35. Wang Y, Li B, Dong Z Y, et al. Gradient separation for pollutants in leachate of a sanitary landfill and its characterization [J]. Chinese Journal of Environmental Engineering, 2012, 6(4): 1281-1287(Ch). [Google Scholar]
  36. Chu Y J, Yu H Q, Cui C. Study on contaminants and their distribution on the surface of RO membrane [J]. Technology of Water Treatment, 2012, 38(1): 72-74(Ch). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.