Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 2, April 2022
Page(s) 161 - 168
DOI https://doi.org/10.1051/wujns/2022272161
Published online 20 May 2022
  1. Alves Jr A A, Andrade Filho L M, Barbosa A F, et al. The LHCb detector at the LHC [J]. Journal of Instrumentation, 2008, 3(8): S08005. [Google Scholar]
  2. Dominik M . Study of Semileptonic D 0 Decays for a Measurement of Charm Mixing at LHCb [D]. Heidelberg: University of Heidelberg, 2014. [Google Scholar]
  3. Ablikim M, Achasov M N, Adlarson P, et al. Future physics programme of BESIII [J]. Chinese Physics C, 2020, 44(4): 040001. [NASA ADS] [CrossRef] [Google Scholar]
  4. Na H, Davies C T, Follana E, et al. Formula semileptonic decay scalar form factor and Formula from lattice QCD [J]. Physical Review-Section D-Particles and Fields, 2011, 84 (11): 114506. [Google Scholar]
  5. Shen Y L, Wei Y B. Formula form factors with the B-meson light-cone sum rules [J]. Advances in High Energy Physics, 2022, 2022: 2755821. [Google Scholar]
  6. Dambach S, Langenegger U, Starodumov A. Neutrino reconstruction with topological information [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 569(3): 824-828. [Google Scholar]
  7. Ciezarek G, Lupato A, Rotondo M, et al. Reconstruction of semileptonically decaying beauty hadrons produced in high energy pp collisions [J]. Journal of High Energy Physics, 2017, 2017(2): 21. [CrossRef] [Google Scholar]
  8. Cowan G A, Craik D C, Needham M D. RapidSim: An application for the fast simulation of heavy-quark hadron decays [J]. Computer Physics Communications, 2017, 214: 239-246. [NASA ADS] [CrossRef] [Google Scholar]
  9. Aaij R, Albrecht J, Alessio F, et al. The LHCb trigger and its performance in 2011 [J]. Journal of Instrumentation, 2013, 8(4): P04022. [NASA ADS] [CrossRef] [Google Scholar]
  10. Sjöstrand T, Ask S, Christiansen J R, et al. An introduction to PYTHIA 8.2 [J]. Computer Physics Communications, 2015, 191: 159-177. [CrossRef] [Google Scholar]
  11. Lange D J . The EvtGen particle decay simulation package [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 462(1-2): 152-155. [Google Scholar]
  12. Golonka P, Kersevan B, Pierzchała T, et al. The tauola-photos-F environment for the TAUOLA and PHOTOS packages, release II [J]. Computer Physics Communications, 2006, 174(10): 818-835. [NASA ADS] [CrossRef] [Google Scholar]
  13. Aaij R, Beteta C A, Ackernley T, et al. First observation of the decay Formula and a measurement of Formula [J]. Physical Review Letters, 2021, 126(8): 081804. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  14. Flynn J, Hill R, Jüttner A, et al. Semileptonic Formula , Formula , Formula , and Formula decays [J]. Proceedings of Science, 2020, 363: 184. [Google Scholar]
  15. Aaij R, Adeva B, Adinolfi M, et al. Determination of the quark coupling strength Formula using baryonic decays [J]. Nature Phys, 2015, 11: 743-747. [NASA ADS] [CrossRef] [Google Scholar]
  16. Aaij R, Beteta C A, Adeva B, et al. Measurement of b hadron fractions in 13 TeV pp collisions [J]. Physical Review D, 2019, 100(3): 031102. [NASA ADS] [CrossRef] [Google Scholar]
  17. Antunes Nobrega R, Franca Barbos A, Bediaga I, et al. LHCb reoptimized detector design and performance: Technical design report [EB/OL]. [2021-12-10]. https://hal.archives-ouvertes.fr/in2p3-00025912. [Google Scholar]
  18. Detmold W, Lehner C, Meinel S. Formula and form factors from lattice QCD with relativistic heavy quarks [J]. Physical Review D, 2015, 92(3): 034503. [NASA ADS] [CrossRef] [Google Scholar]
  19. Aaij R, Beteta C A, Ackernley T, et al. Measurement of Formula with Formula decays [J]. Physical Review D, 2020, 101(7): 072004. [NASA ADS] [CrossRef] [Google Scholar]
  20. He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]//2015 IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1026-1034. [Google Scholar]
  21. Chang Z H, Zhang Y, Chen W B. Effective Adam-optimized LSTM neural network for electricity price forecasting [C]// 2018 IEEE 9th International Conference on Software Engineering and Service Science. New York: IEEE, 2018: 245-248. [Google Scholar]
  22. Ketkar N . Deep Learning with Python [M]. Berkeley: Apress, 2017: 97-111. [CrossRef] [Google Scholar]
  23. Abadi M, Barham P, Chen J, et al. TensorFlow: A system for large-scale machine learning [C]//12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). New York: ACM, 2016: 265-283. [Google Scholar]
  24. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python [J]. The Journal of Machine Learning Research, 2011, 12: 2825-2830. [MathSciNet] [Google Scholar]
  25. Belov S, Dudko L, Kekelidze D, et al. HepML, an XML- based format for describing simulated data in high energy physics [J]. Computer Physics Communications, 2010, 181 (10): 1758-1768. [NASA ADS] [CrossRef] [Google Scholar]
  26. Oliphant T E . A Guide to NumPy [M]. New York: Trelgol Publishing, 2006. [Google Scholar]
  27. Snider L A, Swedo S E. PANDAS: Current status and directions for research [J]. Molecular Psychiatry, 2004, 9(10): 900-907. [CrossRef] [PubMed] [Google Scholar]
  28. Hanin B . Universal function approximation by deep neural nets with bounded width and Relu activations [J]. Mathematics, 2019, 7(10): 992. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.