Open Access
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 2, April 2022
Page(s) 177 - 184
Published online 20 May 2022
  1. Cheadle E J, Sheard V, Hombach A A, et al. Chimeric antigen receptors for T-cell based therapy[J]. Methods in Molecular Biology (Clifton, N J ), 2012, 907: 645-666. [Google Scholar]
  2. McDonald D, Stockwin L, Matzow T, et al. Coxsackie and adenovirus receptor (CAR)-dependent and major histocom- patibility complex (MHC) class I-independent uptake of recombinant adenoviruses into human tumour cells [J]. Gene Therapy, 1999, 6(9): 1512-1519. [CrossRef] [PubMed] [Google Scholar]
  3. Fujiwara K, Masutani M, Tachibana M, et al. Impact of scFv structure in chimeric antigen receptor on receptor expression efficiency and antigen recognition properties [J]. Biochemical and Biophysical Research Communications, 2020, 527(2): 350-357. [CrossRef] [PubMed] [Google Scholar]
  4. Feins S, Kong W M, Williams E F, et al. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer[J]. American Journal of Hematology, 2019, 94(S1): S3-S9. [CrossRef] [Google Scholar]
  5. Chavez J C, Yassine F, Sandoval-Sus J, et al. Anti-CD19 chimeric antigen receptor T-cell therapy in B-cell lymphomas: Current status and future directions [J]. International Journal of Hematologic Oncology, 2021, 10(2): IJH33. [CrossRef] [PubMed] [Google Scholar]
  6. Kershaw M H, Westwood J A, Parker L L, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer [J]. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2006, 12(20 Pt 1): 6106-6115. [Google Scholar]
  7. Song D G, Ye Q R, Poussin M, et al. A fully human chimeric antigen receptor with potent activity against cancer cells but reduced risk for off-tumor toxicity [J]. Oncotarget, 2015, 6(25): 21533-21546. [CrossRef] [PubMed] [Google Scholar]
  8. Zhao Y, Liu Z F, Wang X, et al. Treatment with humanized selective CD19CAR-T cells shows efficacy in highly treated B-ALL patients who have relapsed after receiving murine-based CD19CAR-T therapies [J]. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2019, 25(18): 5595-5607. [Google Scholar]
  9. Chapoval A I, Ni J, Lau J S, et al. B7-H3: A costimulatory molecule for T cell activation and IFN-γ production [J]. Nature Immunology, 2001, 2 (3): 269-274. [CrossRef] [PubMed] [Google Scholar]
  10. Seaman S, Zhu Z Y, Saha S, et al. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature[J]. Cancer Cell, 2017, 31(4): 501-515. [CrossRef] [PubMed] [Google Scholar]
  11. Inamura K, Yokouchi Y, Kobayashi M, et al. Tumor B7-H3 (CD276) expression and smoking history in relation to lung adenocarcinoma prognosis [J]. Lung Cancer, 2017, 103: 44-51. [CrossRef] [PubMed] [Google Scholar]
  12. Benzon B, Zhao S G, Haffner M C, et al. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: An expression-based analysis [J]. Prostate Cancer and Prostatic Diseases, 2017, 20(1): 28-35. [Google Scholar]
  13. Parker A S, Heckman M G, Sheinin Y R, et al. Evaluation of B7-H3 expression as a biomarker of biochemical recurrence after salvage radiation therapy for recurrent prostate cancer[J]. International Journal of Radiation Oncology Biology Physics, 2011, 79(5): 1343-1349. [CrossRef] [PubMed] [Google Scholar]
  14. Loos M, Hedderich D M, Ottenhausen M, et al. Expression of the costimulatory molecule B7-H3 is associated with prolonged survival in human pancreatic cancer [J]. BMC Cancer, 2009, 9: 463. [CrossRef] [PubMed] [Google Scholar]
  15. Souweidane M M, Kramer K, Pandit-Taskar N, et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: A single-centre, dose-escalation, phase 1 trial [J]. The Lancet Oncology, 2018, 19(8): 1040-1050. [CrossRef] [PubMed] [Google Scholar]
  16. Ni L, Dong C. New checkpoints in cancer immunotherapy [J]. Immunological Reviews, 2017, 276(1): 52-65. [CrossRef] [PubMed] [Google Scholar]
  17. Modak S, Kramer K, Gultekin S H, et al. Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors[J]. Cancer Research, 2001, 61(10): 4048-4054. [PubMed] [Google Scholar]
  18. Luther N, Cheung N K V, Dunkel I J, et al. Intraparenchymal and intratumoral interstitial infusion of anti-glioma monoclonal antibody 8H9 [J]. Neurosurgery, 2008, 63(6): 1166-1174. [CrossRef] [PubMed] [Google Scholar]
  19. Modak S, Guo H F, Humm J L, et al. Radioimmunotargeting of human rhabdomyosarcoma using monoclonal antibody 8H9 [J]. Cancer Biotherapy & Radiopharmaceuticals, 2005, 20(5): 534-546. [CrossRef] [PubMed] [Google Scholar]
  20. Kramer K, Kushner B H, Modak S, et al. Compartmental intrathecal radioimmunotherapy: Results for treatment for metastatic CNS neuroblastoma [J]. Journal of Neuro- Oncology, 2010, 97(3): 409-418. [CrossRef] [PubMed] [Google Scholar]
  21. Zhou Z P, Luther N, Ibrahim G M, et al. B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma [J]. Journal of Neuro-Oncology, 2013, 111(3): 257-264. [CrossRef] [PubMed] [Google Scholar]
  22. Bartholomä M D . Radioimmunotherapy of solid tumors: Approaches on the verge of clinical application [J]. Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61(9): 715-726. [CrossRef] [Google Scholar]
  23. Tang X, Zhao S S, Zhang Y, et al. B7-H3 as a novel CAR-T therapeutic target for glioblastoma [J]. Molecular Therapy - Oncolytics, 2019, 14: 279-287. [CrossRef] [Google Scholar]
  24. Ahmed M, Cheng M, Zhao Q, et al. Humanized affinity- matured monoclonal antibody 8H9 has potent antitumor activity and binds to FG loop of tumor antigen B7-H3 [J]. Journal of Biological Chemistry, 2015, 290(50): 30018-30029. [CrossRef] [Google Scholar]
  25. Maude S L, Frey N, Shaw P A, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia [J]. The New England Journal of Medicine, 2014, 371(16): 1507-1517. [CrossRef] [PubMed] [Google Scholar]
  26. Kochenderfer J N, Dudley M E, Kassim S H, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor [J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2015, 33(6): 540-549. [Google Scholar]
  27. Hou B, Tang Y, Li W H, et al. Efficiency of CAR-T therapy for treatment of solid tumor in clinical trials: A meta-analysis [J]. Disease Markers, 2019, 2019: 3425291. [PubMed] [Google Scholar]
  28. Martinez M, Moon E K. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment [J]. Frontiers in Immunology, 2019, 10: 128. [CrossRef] [PubMed] [Google Scholar]
  29. Li J, Li W W, Huang K J, et al. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: Lessons learned and strategies for moving forward [J]. Journal of Hematology & Oncology, 2018, 11(1): 22. [CrossRef] [PubMed] [Google Scholar]
  30. Wang K, Zhao Y, Wang X, et al. Case report: Humanized selective CD19CAR-T treatment induces MRD-negative remission in a pediatric B-ALL patient with primary resistance to murine-based CD19CAR-T therapy [J]. Frontiers in Immunology, 2020, 11: 581116. [CrossRef] [PubMed] [Google Scholar]
  31. Yu S N, Li A P, Liu Q, et al. Chimeric antigen receptor T cells: A novel therapy for solid tumors [J]. Journal of Hematology & Oncology, 2017, 10(1): 78. [CrossRef] [PubMed] [Google Scholar]
  32. Titov A, Valiullina A, Zmievskaya E, et al. Advancing CAR T-cell therapy for solid tumors: Lessons learned from lymphoma treatment [J]. Cancers, 2020, 12(1): 125. [CrossRef] [Google Scholar]
  33. Lamers C H, Sleijfer S, van Steenbergen S, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR- engineered T cells: Clinical evaluation and management of on-target toxicity [J]. Molecular Therapy, 2013, 21(4): 904-912. [CrossRef] [PubMed] [Google Scholar]
  34. Caruso H G, Hurton L V, Najjar A, et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity [J]. Cancer Research, 2015, 75(17): 3505-3518. [CrossRef] [PubMed] [Google Scholar]
  35. Newick K, O'Brien S, Moon E, et al. CAR T cell therapy for solid tumors [J]. Annual Review of Medicine, 2017, 68(11): 139-152. [CrossRef] [PubMed] [Google Scholar]
  36. Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy [J]. International Journal of Biological Sciences, 2020, 16(11): 1767-1773. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.