Open Access
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 3, June 2022
Page(s) 218 - 230
Published online 24 August 2022
  1. Bai H, Zhou C C, Yuan Z Y, et al. Prospect and thinking of digital power grid based on digital twin [J]. Southern Power System Technology, 2020(8): 18-24(Ch). [Google Scholar]
  2. Li P, Xi W, Cai T T, et al. Concept, architecture and key technologies of digital grid [J]. Chinese Journal of Electrical Engineering. DOI: 10.13334/j.0258-8013.pcsee.212086 (Ch). [Google Scholar]
  3. Adib A, Fateh F, Mirafzal B. Smart inverter stability enhancement in weak grids using adaptive virtual-inductance [J]. IEEE Transactions on Industry Applications, 2021, 57(1): 814-823. [CrossRef] [Google Scholar]
  4. Li M Y, Huang W T, Tai N L, et al. A dual-adaptivity inertia control strategy for virtual synchronous generator [J]. IEEE Transactions on Power Systems, 2020, 35(1): 594-604. [NASA ADS] [CrossRef] [Google Scholar]
  5. Mardani F, Falconar N, Shafiei N, et al. A digital control system for UPS systems with smart-grid capability [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(4): 3846-3860. [CrossRef] [Google Scholar]
  6. Peng Q, Fang J Y, Yang Y H, et al. Maximum virtual inertia from DC-link capacitors considering system stability at voltage control timescale [J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11(1): 79-89. [NASA ADS] [CrossRef] [Google Scholar]
  7. Bhowmik P, Rout P K, Guerrero J M, et al. Vector measurement-based virtual inertia emulation technique for real-time transient frequency regulation in microgrids [J]. IEEE Transactions on Power Electronics, 2021, 36(6): 6685-6698. [NASA ADS] [CrossRef] [Google Scholar]
  8. Wu W H, Chen Y D, Luo A, et al. A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines [J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 6005-6016. [NASA ADS] [CrossRef] [Google Scholar]
  9. Ren M W, Li T, Shi K, et al. Coordinated control strategy of virtual synchronous generator based on adaptive moment of inertia and virtual impedance [J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11(1): 99-110. [NASA ADS] [CrossRef] [Google Scholar]
  10. Yang Y, Mei F, Zhang C Y, et al. Coordinated adaptive control strategy of rotational inertia and damping coefficient for virtual synchronous generator [J]. Electric Power Automation Equipment, 2019, 39(3): 125-131(Ch). [Google Scholar]
  11. Karimi A, Khayat Y, Naderi M, et al. Inertia response improvement in AC microgrids: A fuzzy-based virtual synchronous generator control [J]. IEEE Transactions on Power Electronics, 2020, 35(4): 4321-4331. [NASA ADS] [CrossRef] [Google Scholar]
  12. Mao Q H, Zhang Q. An improved sparrow algorithm integrating cauchy mutation and reverse learning [J]. Computer Science and Exploration, 2021, 15(6):1155-1164(Ch). [Google Scholar]
  13. Liu W, Fu J, Zhou D N, et al. Research on shallow neuroevolution method based on improved coyote optimization algorithm [J]. Journal of Computer, 2021, 44(6): 1200-1213(Ch). [Google Scholar]
  14. Wang F, Zhang H, Han M C, et al. A mixed variable multi-objective particle swarm optimization algorithm based on co-evolution to solve the problem of cooperative multi-task assignment of UAVs [J]. Chinese Journal of Computers, 2021, 44(10): 1967-1983(Ch). [Google Scholar]
  15. Wen J B, Yang J C, Wang T Y. Path planning for autonomous underwater vehicles under the influence of ocean currents based on a fusion heuristic algorithm [J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8529-8544. [CrossRef] [Google Scholar]
  16. Li Y G, Bai L, Zheng Z H, et al. Coordinated control optimization of VSG and APF for photovoltaic energy storage microgrid based on multi-objective particle swarm [J]. Renewable Energy, 2021, 39(4): 541-547(Ch). [Google Scholar]
  17. Cheng J P, Xiao J M, Wang X H. VSG control strategy based on improved particle swarm optimization algorithm [J]. Control Engineering, 2021, 28(10): 2028-2037(Ch). [Google Scholar]
  18. Yao F J, Zhao J B, Li X J, et al. RBF neural network based virtual synchronous generator control with improved frequency stability [J]. IEEE Transactions on Industrial Informatics, 2021, 17(6): 4014-4024. [CrossRef] [Google Scholar]
  19. Shadravan S, Naji H R, Bardsiri V K. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems [J]. Engineering Applications of Artificial Intelligence, 2019, 80: 20-34. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.