Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 6, December 2022
Page(s) 539 - 549
DOI https://doi.org/10.1051/wujns/2022276539
Published online 10 January 2023
  1. Stojanovic R, Mitropulos P, Koulamas C, et al. Real-time vision-based system for textile fabric inspection [J]. Real-Time Imaging, 2001, 7(6): 507-518. [CrossRef] [Google Scholar]
  2. Xia D, Jiang G M, Li Y Y, et al. Warp-knitted fabric defect segmentation based on non-subsampled Contourlet transform [J]. The Journal of the Textile Institute, 2017, 108(2): 239-245. [Google Scholar]
  3. Ngan H Y T, Pang G K H, Yung N H C. Automated fabric defect detection—A review [J]. Image and Vision Computing, 2011, 29(7): 442-458. [CrossRef] [Google Scholar]
  4. Zhang Y F, Bresee R R. Fabric defect detection and classification using image analysis [J]. Textile Research Journal, 1995, 65(1): 1-9. [CrossRef] [Google Scholar]
  5. Alper Selver M, Avşar V, Özdemir H. Textural fabric defect detection using statistical texture transformations and gradient search [J]. The Journal of the Textile Institute, 2014, 105(9): 998-1007. [CrossRef] [Google Scholar]
  6. Yang X Z, Pang G K H, Yung N H C. Discriminative fabric defect detection using adaptive wavelets [J]. Optical Engineering, 2002, 41: 3116-3126. [NASA ADS] [CrossRef] [Google Scholar]
  7. Chan C H, Pang G K H. Fabric defect detection by Fourier analysis [J]. IEEE Transactions on Industry Applications, 2000, 36(5): 1267-1276. [CrossRef] [Google Scholar]
  8. Cohen F S, Fan Z, Attali S. Automated inspection of textile fabrics using textural models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8): 803-808. [CrossRef] [Google Scholar]
  9. Bu H G, Huang X B, Wang J, et al. Detection of fabric defects by auto-regressive spectral analysis and support vector data description [J]. Textile Research Journal, 2010, 80(7): 579-589. [CrossRef] [Google Scholar]
  10. Zhu Z W, Han G J, Jia G Y, et al. Modified DenseNet for automatic fabric defect detection with edge computing for minimizing latency [J]. IEEE Internet of Things Journal, 2020, 7(10): 9623-9636. [CrossRef] [Google Scholar]
  11. Xie H, Wu Z. A robust fabric defect detection method based on improved RefineDet [J]. Sensors (Basel, Switzerland), 2020, 20(15): E4260. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  12. Hu G H, Huang J F, Wang Q H, et al. Unsupervised fabric defect detection based on a deep convolutional generative adversarial network [J]. Textile Research Journal, 2020, 90(3/4): 247-270. [CrossRef] [Google Scholar]
  13. Jun X, Wang J G, Zhou J, et al. Fabric defect detection based on a deep convolutional neural network using a two-stage strategy [J]. Textile Research Journal, 2021, 91(1/2): 130-142. [CrossRef] [Google Scholar]
  14. Elemmi M C, Anami B S, Malvade N N. Defective and nondefective classif ication of fabric images using shallow and deep networks [J]. International Journal of Intelligent Systems, 2022, 37(3): 2293-2318. [CrossRef] [Google Scholar]
  15. Liu R Q, Li M H, Shi J C, et al. Fabric defect detection method based on improved U-net [J]. Journal of Physics: Conference Series, 2021, 1948(1): 012160. [Google Scholar]
  16. Liu J H, Wang C Y, Su H, et al. Multistage GAN for fabric defect detection [J]. IEEE Transactions on Image Processing, 2020, 29: 3388-3400. [NASA ADS] [CrossRef] [Google Scholar]
  17. Jing J F, Zhuo D, Zhang H H, et al. Fabric defect detection using the improved YOLOv3 model [J]. Journal of Engineered Fibers and Fabrics, 2020, 15: 155892502090826. [Google Scholar]
  18. Chen L C, Zhu Y K, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Computer Vision-ECCV 2018, 2018: 801-808. [Google Scholar]
  19. Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs [EB/OL]. [2022-10-22]. https://www.semanticscholarorg/reader/39ad6c911f3351a3b390130a6e4265355b4d593b. [Google Scholar]
  20. Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [CrossRef] [PubMed] [Google Scholar]
  21. Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. [2022-09-07]. https://www.semanticscholar.org/reader/ee4a012a4b12d11d7ab8c0e79c61e807927a163c. [Google Scholar]
  22. Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [CrossRef] [PubMed] [Google Scholar]
  23. Dumoulin V, Visin F. A guide to convolution arithmetic for deep learning [EB/OL]. [2022-09-24]. https://www.semanticscholar.org/reader/f19284f6ab802c8a1fcde076fcb3fba195a71723. [Google Scholar]
  24. He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778. [Google Scholar]
  25. Sandler M, Howard A, Zhu M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 4510-4520. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.