Open Access
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 1, February 2023
Page(s) 29 - 34
Published online 17 March 2023
  1. An M X, Wu F Z, Wu C H, et al. Neural news recommendation with long-and short-term user representations[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2019: 336-345. [Google Scholar]
  2. Huang P S, He X D, Gao J F, et al. Learning deep structured semantic models for web search using clickthrough data[C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: ACM, 2013: 2333-2338. [Google Scholar]
  3. Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 7-10. [Google Scholar]
  4. Wang H W, Zhang F Z, Xie X, et al. DKN: Deep knowledge-aware network for news recommendation[C]// Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018: 1835- 1844. [Google Scholar]
  5. Wang H W, Zhang F Z, Wang J L, et al. Ripplenet: Propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426. [Google Scholar]
  6. Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data[C]// Advances in Neural Information Processing Systems. New York: ACM, 2013: 2787-2795. [Google Scholar]
  7. Rehůřek R, Sojka P. Software framework for topic modelling with large Corpora[C]//Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Stroudsburg: Association for Computational Linguistics, 2010: 45-50. [Google Scholar]
  8. McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension reduction[EB/OL].[2022-05-18]. http//www.arXiv preprintarXiv:1802.03426 [Google Scholar]
  9. Campello R, Moulavi D, Sander J. Density-based clustering based on hierarchical density estimates[C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. New York: ACM, 2013:160-172 [Google Scholar]
  10. McInnes L , Healy L. Accelerated hierarchical density based clustering [C]//2017 IEEE International Conference on Data Mining Workshops (ICDMW). Washington D C: IEEE, 2017:33-42. [Google Scholar]
  11. Rendle S. Factorization machines with libfm[C]// ACM Transactions on Intelligent Systems and Technology (TIST). New York: ACM, 2012: 1-22. [Google Scholar]
  12. Guo H F, Tang R M, Ye Y M, et al. DeepFM: A factorization-machine based neural network for CTR prediction[EB/OL].[2022-05-18]. http//www.arXivpreprintarXiv:1703.04247. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.