Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 2, April 2023
|
|
---|---|---|
Page(s) | 141 - 149 | |
DOI | https://doi.org/10.1051/wujns/2023282141 | |
Published online | 23 May 2023 |
- Kumar M, Dargan S. A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities[J]. Expert Systems with Applications, 2019, 143: 1-27. [Google Scholar]
- Wang M, Deng W H. Deep face recognition: A survey[J]. Neurocomputing, 2021, 429: 215-244. [Google Scholar]
- Help Net Security. How well do face recognition algorithms identify people wearing masks?[EB/OL]. [2020-07-28]. https://www.helpnetsecurity.com/2020/07/28/how-well-do-face-recognition-algorithms-identify-people-wearing-masks/. [Google Scholar]
- Zhou W B, Ma X T, Zhang Y. Research on image preprocessing algorithm and deep learning of iris recognition[J]. Journal of Physics Conference Series, 2020, 1621(1): 012008. [NASA ADS] [CrossRef] [Google Scholar]
- Nagarajan D, Sujatha R, Kavikumar J, et al. Retina identification system using machine learning and multiple regression model[J]. Indian Journal of Public Health Research and Development, 2019, 10(7): 178. [Google Scholar]
- Tan C W, Kumar A. Towards online iris and periocular recognition under relaxed imaging constraints[J]. IEEE Transactions on Image Processing, 2013, 22(10): 3751-3765. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D C: IEEE, 2015: 815-823. [Google Scholar]
- Liu W Y, Wen Y D, Yu Z D, et al. SphereFace: Deep hypersphere embedding for face recognition[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D C: IEEE, 2017: 6738-6746. [Google Scholar]
- Zhu N, Yu Z K, Kou C X. A new deep neural architecture search pipeline for face recognition[J]. IEEE Access, 2020, 8: 91303-91310. [CrossRef] [Google Scholar]
- Geng M, Peng P, Huang Y, et al. Masked face recognition with generative data augmentation and domain constrained ranking[C]// MM '20: The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 2246-2254. [Google Scholar]
- Sunil T A, Gupta P, Jain A, et al. Face recognition with mask using MTCNN and FaceNet[C]// Artificial Intelligence and Technologies. Berlin: Springer-Verlag, 2022: 103-109. [Google Scholar]
- Huber M, Boutros F, Kirchbuchner F, et al. Mask-invariant face recognition through template-level knowledge distillation[C]//2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021). Washington D C: IEEE, 2021: 1-8. [Google Scholar]
- Xu M, Chen D, Zhou G. Real-time face recognition based on Dlib[C]//Innovative Computing: IC 2020. Berlin: Springer-Verlag, 2020: 1451-1459. [Google Scholar]
- Github. PaddleHub[DB/OL]. [2021-12-20]. https://github.com/PaddlePaddle/PaddleHub. [Google Scholar]
- Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. [CrossRef] [Google Scholar]
- Park U, Jillela R R, Ross A, et al. Periocular biometrics in the visible spectrum[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(1): 96-106. [Google Scholar]
- Huang T, Ru S R, Zeng Z H, et al. Research on motion recognition algorithm based on bag-of-words model[J]. Microsystem Technologies, 2021, 27(4): 1647-1654. [Google Scholar]
- Bansal M, Kumar M, Kumar M. 2D object recognition: A comparative analysis of SIFT, SURF and ORB feature descriptors[J]. Multimedia Tools and Applications, 2021, 80(12): 18839-18857. [CrossRef] [Google Scholar]
- Dadi H S, Pillutla G K. Improved face recognition rate using HOG features and SVM classifier[J]. Iosr Journal of Electronics & Communication Engineering, 2016, 11(4): 34-44. [CrossRef] [Google Scholar]
- Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2022-04-10]. https://arxiv.org/abs/1409.1556. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.