Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 2, April 2023
Page(s) 169 - 176
DOI https://doi.org/10.1051/wujns/2023282169
Published online 23 May 2023
  1. Li H H, Tan Z F, Chen H T, et al. Integrated heat and power dispatch model for wind-CHP system with solid heat storage device based on robust stochastic theory [J]. Wuhan University Journal of Natural Sciences, 2018, 23(1): 31-42. [CrossRef] [MathSciNet] [Google Scholar]
  2. Hu Y, Li Q, Fang F, et al. Dynamic interval modeling of ultra-short-term output of wind farm based on finite difference operating domains [J]. Power System Technology, 2022, 46(4): 1346-1357(Ch). [Google Scholar]
  3. Tang X Z, Gu N W, Huang X Q, et al. Progress on short term wind power forecasting technology [J]. Journal of Mechanical Engineering, 2022, 58(12): 213-236(Ch). [Google Scholar]
  4. Feng S L, Wang W S, Liu C, et al. Study on the physical approach to wind power prediction [J]. Proceedings of the CSEE, 2010, 30(2): 1-6(Ch). [Google Scholar]
  5. Lu P, Ye L, Pei M, et al. Coordinated control strategy for active power of wind power cluster based on model predictive control [J]. Proceedings of the CSEE, 2021, 41(17): 5887-5900(Ch). [Google Scholar]
  6. Sun Y, Li Z Y, Yu X N, et al. Research on ultra-short-term wind power prediction considering source relevance [J]. IEEE Access, 2020, 8: 147703-147710. [CrossRef] [Google Scholar]
  7. Lu P, Ye L, Zhong W Z, et al. A novel spatio-temporal wind power forecasting framework based on multi-output support vector machine and optimization strategy [J]. Journal of Cleaner Production, 2020, 254: 119993. [CrossRef] [Google Scholar]
  8. Liu T H, Wei H K, Zhang K J. Wind power prediction with missing data using Gaussian process regression and multiple imputation [J]. Applied Soft Computing, 2018, 71: 905-916. [Google Scholar]
  9. Liu X, Zhou J, Qian H M. Short-term wind power forecasting by stacked recurrent neural networks with parametric sine activation function [J]. Electric Power Systems Research, 2021, 192: 107011. [CrossRef] [Google Scholar]
  10. Zhao Z, Wang X S. Ultra-short-term multi-step wind power prediction based on CEEMD and improved time series model[J]. Acta Energiae Solaris Sinica, 2020, 41(7): 352-358(Ch). [Google Scholar]
  11. Cherkassky V, Ma Y Q. Practical selection of SVM parameters and noise estimation for SVM regression [J]. Neural Networks: The Official Journal of the International Neural Network Society, 2004, 17(1): 113-126. [Google Scholar]
  12. Zhou D W, Zhao L J, Duan R, et al. Image super-resolution based on recursive residual networks [J]. Acta Automatica Sinica, 2019, 45(6): 1157-1165(Ch). [Google Scholar]
  13. Shahid F, Zameer A, Muneeb M. A novel genetic LSTM model for wind power forecast [J]. Energy, 2021, 223: 120069. [Google Scholar]
  14. Meng Y, Chen S L, Wu Z H, et al. A DC arc fault detection method based on CatBoost algorithm for different electrode materials [J]. Journal of Xi'an Jiaotong University, 2022, 56(3): 124-134(Ch). [Google Scholar]
  15. Munawar U, Wang Z L. A framework of using machine learning approaches for short-term solar power forecasting[J]. Journal of Electrical Engineering & Technology, 2020, 15(2): 561-569. [NASA ADS] [CrossRef] [Google Scholar]
  16. Liu K W, Pu T J, Zhou H M, et al. A short-term wind power forecasting model based on combination algorithms [J]. Proceedings of the CSEE, 2013, 33(34): 130-135(Ch). [Google Scholar]
  17. Zhang Q, Tang Z H, Wang G, et al. Ultra-short-term wind power prediction model based on long and short term memory network [J]. Acta Energiae Solaris Sinica, 2021, 42(10): 275-281(Ch). [Google Scholar]
  18. Ding J L, Chen G C, Yuan K. Short-term wind power prediction based on improved firefly algorithm [J]. Journal of System Simulation, 2019, 31(11): 2509-2516(Ch). [Google Scholar]
  19. Qian Z, Pei Y, Cao L X, et al. Review of wind power forecasting method [J]. High Voltage Engineering, 2016, 42(4): 1047-1060(Ch). [Google Scholar]
  20. Dong L M, Zeng W Z, Lei G Q. Coupling CatBoost model with bat algorithm to simulate the pan evaporation in northwest China [J]. Water Saving Irrigation, 2021(2): 63-69(Ch). [Google Scholar]
  21. Miao F S, Li Y, Gao C, et al. Diabetes prediction method based on CatBoost algorithm [J]. Computer Systems & Applications, 2019, 28(9): 215-218(Ch). [Google Scholar]
  22. Yao F Q, Sun J W, Dong J H. Estimating daily dew point temperature based on local and cross-station meteorological data using CatBoost algorithm [J]. Computer Modeling in Engineering & Sciences, 2022, 130(2): 671-700. [Google Scholar]
  23. Zhu R, Xu H, Gong Q, et al. Wind environmental regionalization for development and utilization of wind energy in China [J]. Acta Energiae Solaris Sinica, 2022, 8: 1-14(Ch). [Google Scholar]
  24. Ma X P, He S E, Yao Y, et al. Virtual inertia estimation of wind farm zones with wind speed uncertainty and correlation[J]. Power System Protection and Control, 2022, 50(10): 123-131(Ch). [Google Scholar]
  25. Kundu S M, Pal S K. Deprecation based greedy strategy for target set selection in large scale social networks [J]. Information Sciences: An International Journal, 2015, 316: 107-122. [Google Scholar]
  26. Fan J Q, Lv J C. Sure independence screening for ultrahigh dimensional feature space [J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2008, 70(5): 849-911. [CrossRef] [MathSciNet] [Google Scholar]
  27. Zhou Q, Ren H J, Li J, et al. Variable weight combination method for mid-long term power load forecasting based on hierarchical structure [J]. Proceedings of the CSEE, 2010, 30(16): 47-52(Ch). [Google Scholar]
  28. Faber N M. Estimating the uncertainty in estimates of root mean square error of prediction: Application to determining the size of an adequate test set in multivariate calibration [J]. Chemometrics and Intelligent Laboratory Systems, 1999, 49(1): 79-89. [Google Scholar]
  29. Coyle E J, Lin J H. Stack filters and the mean absolute error criterion [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(8): 1244-1254. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.