Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 5, October 2023
|
|
---|---|---|
Page(s) | 433 - 440 | |
DOI | https://doi.org/10.1051/wujns/2023285433 | |
Published online | 10 November 2023 |
- Hosseini-Nasab H, Fereidouni S, Ghomi S M T F, et al. Classification of facility layout problems: A review study[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1-4): 957-977. [CrossRef] [Google Scholar]
- Singh S P, Sharma R R. A review of different approaches to the facility layout problems[J]. The International Journal of Advanced Manufacturing Technology, 2006, 30(5-6): 425-433. [CrossRef] [Google Scholar]
- Pillai V M, Hunagund I B, Krishnan K K. Design of robust layout for dynamic plant layout problems[J]. Computers & Industrial Engineering, 2011, 61(3): 813-823. [CrossRef] [Google Scholar]
- Ahonen H, de Alvarenga A G, Amaral A R. Simulated annealing and Tabu search approaches for the corridor allocationproblem[J]. European Journal of Operational Research, 2014, 232(1): 221-233. [CrossRef] [MathSciNet] [Google Scholar]
- Kouvelis P, Chiang W, Kiran A. A survey of layout issues in flexible manufacturing systems[J]. Omega, 1992, 20(3): 375-390. [CrossRef] [Google Scholar]
- Amaral A R. A parallel ordering problem in facilities layout[J]. Computers & Operations Research, 2013, 40(12): 2930-2939. [CrossRef] [MathSciNet] [Google Scholar]
- Chung J, Tanchoco J. The double row layout problem[J]. International Journal of Production Research, 2010, 48(3): 709-727. [CrossRef] [Google Scholar]
- Zhang Z, Murray C C. A corrected formulation for the double row layout problem[J]. International Journal of Production Research, 2012, 50(15): 4220-4223. [CrossRef] [Google Scholar]
- Amaral A R. Optimal solutions for the double row layout problem[J]. Optimization Letters, 2013, 7(2): 407-413. [CrossRef] [MathSciNet] [Google Scholar]
- Secchin L D, Amaral A R. An improved mixed-integer programming model for the double row layout of facilities[J]. Optimization Letters, 2019, 13(1): 193-199. [CrossRef] [MathSciNet] [Google Scholar]
- Amaral A R. A mixed-integer programming formulation for the double row layout of machines in manufacturing systems[J]. International Journal of Production Research, 2019, 57(1): 34-47. [CrossRef] [MathSciNet] [Google Scholar]
- Chae J, Regan A C. A mixed integer programming model for a double row layout problem[J]. Computers & Industrial Engineering, 2020, 140: 106244. [CrossRef] [Google Scholar]
- Murray C C, Zuo X, Smith A E. An extended double row layout problem[EB/OL]. [2012-01-25]. https://www.mhi.org/downloads/learning/cicmhe/colloquium/2012/smith.pdf. [Google Scholar]
- Murray C C, Smith A E, Zhang Z. An efficient local search heuristic for the double row layout problem with asymmetric material flow[J]. International Journal of Production Research, 2013, 51(20): 6129-6139. [CrossRef] [Google Scholar]
- Tang L, Zuo X, Wang C, et al. A MOEA/D based approach for solving robust double row layout problem[C]//2015 IEEE Congress on Evolutionary Computation (CEC). New York: IEEE, 2015: 1966-1973. [Google Scholar]
- Wang S, Zuo X, Liu X, et al. Solving dynamic double row layout problem via combining simulated annealing and mathematical programming[J]. Applied Soft Computing, 2015, 37: 303-310. [CrossRef] [Google Scholar]
- Anjos M F, Fischer A, Hungerländer P. Solution approaches for the double-row equidistant facility layout problem[C]//Operations Research Proceedings 2014. Berlin: Springer-Verlag, 2016: 17-23. [Google Scholar]
- Gülsen M, Murray C C, Smith A E. Double-row facility layout with replicate machines and split flows[J]. Computers & Operations Research, 2019, 108: 20-32. [CrossRef] [MathSciNet] [Google Scholar]
- Zuo X, Liu X, Zhang Q, et al. MOEA/D with linear programming for double row layout problem with center-islands[J]. IEEE Transactions on Cybernetics, 2019, 51(7): 3549-3561. [Google Scholar]
- Bracht U, Dahlbeck M, Fischer A, et al. Combining simulation and optimization for extended double row facility layout problems in factory planning[C]//Simulation Science. Cham: Springer International Publishing, 2018: 39-59. [Google Scholar]
- Zhang Z, Cheng W. Decomposition strategies and heuristic for double row layout problem[J]. Computer Integrated Manufacturing Systems, 2014, 20(3): 559-568. [Google Scholar]
- Guan J, Lin G, Feng H, et al. A decomposition-based algorithm for the double row layout problem[J]. Applied Mathematical Modelling, 2020, 77: 963-979. [CrossRef] [MathSciNet] [Google Scholar]
- Zuo X, Murray C C, Smith A E. Solving an extended double row layout problem using multiobjective Tabu search and linear programming[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(4): 1122-1132. [CrossRef] [MathSciNet] [Google Scholar]
- Zuo X, Murray C, Smith A. Sharing clearances to improve machine layout[J]. International Journal of Production Research, 2016, 54(14): 4272-4285. [CrossRef] [Google Scholar]
- Amaral A R. The corridor allocation problem[J]. Computers & Operations Research, 2012, 39(12): 3325-3330. [Google Scholar]
- Kalita Z, Datta D, Palubeckis G. Bi-objective corridor allocation problem using a permutation-based genetic algorithm hybridized with a local search technique[J]. Soft Computing, 2019, 23(3): 961-986. [CrossRef] [Google Scholar]
- Zuo X, Gao S, Zhou M, et al. A three-stage approach to a multirow parallel machine layout problem[J]. IEEE Transactions on Automation Science and Engineering, 2018, 16(1): 433-447. [Google Scholar]
- Yang X, Cheng W, Guo P, et al. Mixed integer programming formulations for single row facility layout problems with asymmetric material flow and corridor width[J]. Arabian Journal for Science and Engineering, 2019, 44: 7261-7276. [CrossRef] [Google Scholar]
- Belov G, Stuckey P J, Tack G, et al. Improved linearization of constraint programming models[C]//Principles and Practice of Constraint Programming: 22nd International Conference. Berlin: Springer International Publishing, 2016: 49-65. [MathSciNet] [Google Scholar]
- Simmons D M. One-dimensional space allocation: An ordering algorithm[J]. Operations Research, 1969, 17(5): 812-826. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.