Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 6, December 2023
Page(s) 508 - 522
DOI https://doi.org/10.1051/wujns/2023286508
Published online 15 January 2024
  1. Zhu R H, Xin B J, Deng N, et al. Semantic segmentation using DeepLabv3+ model for fabric defect detection[J]. Wuhan University Journal of Natural Sciences, 2022, 27(6):539-549. [CrossRef] [EDP Sciences] [Google Scholar]
  2. Luo J,Xin B J, Yuan X W. Photometric stereo-based 3D reconstruction method for the objective evaluation of fabric pilling[J]. Wuhan University Journal of Natural Sciences, 2022, 27(6):550-556.. [CrossRef] [EDP Sciences] [Google Scholar]
  3. Xing W Y, Deng N, Xin B J, et al. An image-based method for the automatic recognition of Cashmere and wool fibers[J]. Measurement, 2019, 141: 102-112. [NASA ADS] [CrossRef] [Google Scholar]
  4. Wang W D, Xin B J, Deng N, et al. Objective evaluation on yarn hairiness detection based on multi-view imaging and processing method[J]. Measurement, 2019, 148: 106905. [CrossRef] [Google Scholar]
  5. Chen Y, Deng N, Xin B J, et al. Structural characterization and measurement of nonwoven fabrics based on multi-focus image fusion[J]. Measurement, 2019, 141: 356-363. [NASA ADS] [CrossRef] [Google Scholar]
  6. Wang Y L, Deng N, Xin B J. Investigation of 3D surface profile reconstruction technology for automatic evaluation of fabric smoothness appearance[J]. Measurement, 2020, 166: 108264. [Google Scholar]
  7. Imaoka H, Inui S, Niwaya H, et al. Trial on automatic measurement of the density[J]. Sen'i Gakkaishi, 1988, 44(1): 32-39. [CrossRef] [Google Scholar]
  8. Wood E J. Applying Fourier and associated transforms to pattern characterization in textiles[J]. Textile Research Journal, 1990, 60(4): 212-220. [CrossRef] [Google Scholar]
  9. Hosseini Ravandi S A, Toriumi K. Fourier transform analysis of plain weave fabric appearance[J]. Textile Research Journal, 1995, 65(11): 676-683. [CrossRef] [Google Scholar]
  10. Sari-Sarraf H, Goddard Jr J S . Online optical measurement and monitoring of yarn density in woven fabrics[C]//Automated Optical Inspection for Industry. Beijing: SPIE, 1996: 444-452. [Google Scholar]
  11. Xu B G. Identifying fabric structures with fast Fourier transform techniques[J]. Textile Research Journal, 1996, 66(8): 496-506. [CrossRef] [Google Scholar]
  12. Xin B J, Yu X F, Wu Z P. Automatic identifying the woven fabric pattern by image analysis technique[J]. Journal of Donghua University (Natural Science), 2011, 37(1): 35-41 (Ch). [Google Scholar]
  13. Li J L, Wang H A, Zhao D X, et al. Research on fabric image registration technique based on pattern recognition using cross-power spectrum[C]//2009 WRI World Congress on Software Engineering. New York: IEEE, 2009: 420-423. [Google Scholar]
  14. Technikova L, Tunak M. Weaving density evaluation with the aid of image analysis[J]. Fibres & Textiles in Eastern Europe, 2013, 21(2): 5-74. [Google Scholar]
  15. Jeong Y J, Jang J. Applying image analysis to automatic inspection of fabric density for woven fabrics[J]. Fibers and Polymers, 2005, 6(2): 156-161. [CrossRef] [Google Scholar]
  16. Zhang J, Xin B J, Wu X J. Density measurement of yarn dyed woven fabrics based on dual-side scanning and the FFT technique[J]. Measurement Science and Technology, 2014, 25(11): 115007. [NASA ADS] [CrossRef] [Google Scholar]
  17. Zhang R, Xin B J. An investigation of density measurement method for yarn-dyed woven fabrics based on dual-side fusion technique[J]. Measurement Science and Technology, 2016, 27(8): 085403. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  18. Xin B J. Automatic measurement method of yarn dyed woven fabric density via wavelet transform fusion technique[J]. Journal of Fiber Bioengineering and Informatics, 2018, 9(2): 115-132. [Google Scholar]
  19. Pan R R, Gao W D, Li Z, et al. Measuring thread densities of woven fabric using the Fourier transform[J]. Fibres & Textiles in Eastern Europe, 2015, 23(1): 35-40. [CrossRef] [Google Scholar]
  20. Schneider D, Merhof D. Blind weave detection for woven fabrics[J]. Pattern Analysis and Applications, 2015, 18(3): 725-737. [CrossRef] [MathSciNet] [Google Scholar]
  21. Tunák M, Linka A, Volf P. Automatic assessing and monitoring of weaving density[J]. Fibers and Polymers, 2009, 10(6): 830-836. [CrossRef] [Google Scholar]
  22. Schneider D, Gloy Y S, Merhof D. Vision-based on-loom measurement of yarn densities in woven fabrics[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(4): 1063-1074. [CrossRef] [Google Scholar]
  23. Xiang Z, Zhang J F, Hu X D. Vision-based portable yarn density measure method and system for basic single color woven fabrics[J]. The Journal of the Textile Institute, 2018, 109(12): 1543-1553. [CrossRef] [Google Scholar]
  24. Pan R R, Zhang J, Li Z J, et al. Applying image analysis for automatic density measurement of high-tightness woven fabrics[J]. Fibres and Textiles in Eastern Europe, 2016, 24(2): 66-72. [CrossRef] [Google Scholar]
  25. Qin Y L, Xu F L. Analysis and research of the fabric density based on the wavelet transform[C]//2012 Fifth International Symposium on Computational Intelligence and Design. New York: IEEE, 2013: 197-200. [Google Scholar]
  26. Jing J F, Liu S, Li P F, et al. Automatic density detection of woven fabrics via wavelet transform[J]. Journal of Information and Computational Science, 2014, 11(8): 2559-2568. [CrossRef] [Google Scholar]
  27. Jing J F, Deng Q Y, Li P F. Automatic inspection of woven fabric density based on digital image analysis[J]. Journal of Fiber Bioengineering and Informatics, 2015, 8(2): 259-266. [CrossRef] [Google Scholar]
  28. Lin J J. Applying a Co-occurrence matrix to automatic inspection of weaving density for woven fabrics[J]. Textile Research Journal, 2002, 72(6): 486-490. [CrossRef] [Google Scholar]
  29. Ajallouian F, Tavanai H, Palhang M, et al. A novel method for the identification of weave repeat through image processing[J]. Journal of the Textile Institute, 2009, 100(3): 195-206. [CrossRef] [Google Scholar]
  30. Pan R R, Gao W D, Liu J H, et al. Automatic inspection of double-system-mélange yarn-dyed fabric density with color-gradient image[J]. Fibers and Polymers, 2011, 12(1): 127-131. [CrossRef] [Google Scholar]
  31. Pan R R, Liu J H, Gao W D. Measuring linear density of threads in single-system-mélange color fabrics with FCM algorithm[J]. Color Research & Application, 2013, 38(6): 456-462. [CrossRef] [Google Scholar]
  32. Zhang J, Pan R R, Wang J G, et al. An efficient method for density measurement for high-tightness woven fabrics[J]. Textile Research Journal, 2017, 87(3): 329-339. [CrossRef] [Google Scholar]
  33. Wang X C, Li X J. Recognition of fabric density with quadratic local extremum[J]. International Journal of Clothing Science and Technology, 2012, 24(5): 328-338. [CrossRef] [Google Scholar]
  34. Zhang J, Pan R R, Gao W D, et al. Automatic inspection of yarn-dyed fabric density by mathematical statistics of sub-images[J]. The Journal of the Textile Institute, 2015, 106(8): 823-834. [CrossRef] [Google Scholar]
  35. Yuan X W, Xin B J, Luo J, et al. An investigation of woven fabric density measurement using image analysis based on RTV-SFT[J]. The Journal of the Textile Institute, 2023, 114(9): 1291-1300. [CrossRef] [Google Scholar]
  36. Chen S C, Liu M Q, Zhang S L. Fabric patterns recognition based on weft phase difference[C]//2019 Chinese Control Conference (CCC). New York: IEEE, 2019: 7810-7815. [Google Scholar]
  37. Zhang J, Pan R R, Gao W D. Automatic inspection of density in yarn-dyed fabrics by utilizing fabric light transmittance and Fourier analysis[J]. Applied Optics, 2015, 54(4): 966-972. [Google Scholar]
  38. Xiang Z, Chen K F, Qian M, et al. Yarn-dyed woven fabric density measurement method and system based on multi-directional illumination image fusion enhancement technology[J]. The Journal of the Textile Institute, 2020, 111(10): 1489-1501. [CrossRef] [Google Scholar]
  39. Pan R R, Gao W D, Liu J H, et al. Automatic inspection of woven fabric density of solid colour fabric density by the Hough transform[J]. Fibres & Textiles in Eastern Europe, 2010, 18(4): 46-51. [Google Scholar]
  40. Jing J F, Liu S, Zhang L, et al. Skew detection and yarns density calculation for woven fabric[J]. Journal of Fiber Bioengineering and Informatics, 2014, 7(4): 615-625. [CrossRef] [Google Scholar]
  41. Zhang J, Pan R R, Gao W D. A backlighting method for accurate inspection of woven fabric density[J]. Industria Textila, 2017, 68(1): 31-36. [CrossRef] [Google Scholar]
  42. Meng S, Pan R R, Gao W D, et al. Woven fabric density measurement by using multi-scale convolutional neural networks[J]. IEEE Access, 2019, 7: 75810-75821. [NASA ADS] [CrossRef] [Google Scholar]
  43. Aldemir E, Özdemir H, Sarı Z. An improved gray line profile method to inspect the warp-weft density of fabrics[J]. The Journal of the Textile Institute, 2019, 110(1): 105-116. [CrossRef] [Google Scholar]
  44. Zheng D J, Wang L H. Multi-scale density detection for yarn-dyed fabrics with deformed repeat patterns[J]. Textile Research Journal, 2017, 87(20): 2524-2540. [CrossRef] [Google Scholar]
  45. Meng S, Pan R R, Gao W D, et al. A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern[J]. Journal of Intelligent Manufacturing, 2021, 32(4): 1147-1161. [CrossRef] [Google Scholar]
  46. Zhang X C, Li P, Jin F J. Density detection for knitted fabric based on image space domain method[C]//The 27th Chinese Control and Decision Conference (2015 CCDC). New York: IEEE, 2015: 5657-5662. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.