Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 3, June 2024
|
|
---|---|---|
Page(s) | 198 - 208 | |
DOI | https://doi.org/10.1051/wujns/2024293198 | |
Published online | 03 July 2024 |
- Quijano-Sánchez L, Cantador I, Cortés-Cediel M E, et al. Recommender systems for smart cities[J]. Information Systems, 2020, 92: 101545. [CrossRef] [Google Scholar]
- Scholz M, Dorner V, Schryen G, et al. A configuration-based recommender system for supporting e-commerce decisions[J]. European Journal of Operational Research, 2017, 259(1): 205-215. [CrossRef] [MathSciNet] [Google Scholar]
- Shoja B M, Tabrizi N. Customer reviews analysis with deep neural networks for e-commerce recommender systems[J]. IEEE Access, 2019, 7: 119121-119130. [NASA ADS] [CrossRef] [Google Scholar]
- Zhou M Z, Ding Z Y, Tang J L, et al. Micro behaviors: A new perspective in e-commerce recommender systems[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 727-735. [CrossRef] [Google Scholar]
- Najafi-Asadolahi S, Fridgeirsdottir K. Cost-per-click pricing for display advertising[J]. Manufacturing & Service Operations Management, 2014, 16(4): 482-497. [CrossRef] [Google Scholar]
- Fain D C, Pedersen J O. Sponsored search: A brief history[J]. Bulletin of the American Society for Information Science and Technology, 2006, 32(2): 12. [CrossRef] [Google Scholar]
- He X, Pan W, Cheng H. Research on advertising click-through rate prediction model based on ensemble learning[C]//Recent Advances in Data Science: Third International Conference on Data Science, Medicine, and Bioinformatics, IDMB2019. Singapore: Springer-Verlag, 2020: 82-93. [Google Scholar]
- Chen M, Liu P. Performance evaluation of recommender systems[J]. International Journal of Performability Engineering, 2017, 13(8): 1246. [Google Scholar]
- Cheng C, Yang H Q, Lyu M R, et al. Where you like to go next: Successive point-of-interest recommendation[C]//Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. New York: ACM, 2013: 2605-2611. [Google Scholar]
- He R N, McAuley J. Fusing similarity models with Markov chains for sparse sequential recommendation[C]//2016 IEEE 16th International Conference on Data Mining (ICDM). New York: IEEE, 2016: 191-200. [Google Scholar]
- Wang P F, Guo J F, Lan Y Y, et al. Learning hierarchical representation model for NextBasket recommendation[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 403-412. [Google Scholar]
- Tang J X, Wang K. Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573. [CrossRef] [Google Scholar]
- Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010. [Google Scholar]
- Feng Y F, Lv F Y, Shen W C, et al. Deep session interest network for click-through rate prediction[EB/OL]. [2023-06-21]. http://arxiv.org/abs/1905.06482. [Google Scholar]
- Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 7-10. [CrossRef] [Google Scholar]
- Wang R X, Fu B, Fu G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the AdKDD and TargetAd. Halifax: NS, 2017: 1-7. [Google Scholar]
- Guo H F, Tang R M, Ye Y M, et al. DeepFM: A factorization-machine based neural network for CTR prediction[EB/OL]. [2023-06-21]. http://arxiv.org/abs/1703.04247. [Google Scholar]
- Lian J X, Zhou X H, Zhang F Z, et al. xDeepFM: Combining explicit and implicit feature interactions for recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1754-1763. [CrossRef] [Google Scholar]
- Yu F, Liu Q, Wu S, et al. A dynamic recurrent model for next basket recommendation[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2016: 729-732. [Google Scholar]
- Zhou G R, Zhu X Q, Song C R, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1059-1068. [CrossRef] [Google Scholar]
- Liu Q, Zeng Y F, Mokhosi R, et al. STAMP: Short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1831-1839. [CrossRef] [Google Scholar]
- Bello I. Lambdanetworks: Modeling long-range interactions without attention[EB/OL]. [2023-06-21]. http://arxiv.org/abs/2102.08602. [Google Scholar]
- Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[EB/OL]. [2023-06-21]. http://arxiv.org/abs/1409.0473. [Google Scholar]
- Katharopoulos A, Vyas A, Pappas N, et al. Transformers are RNNS: Fast autoregressive transformers with linear attention[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 5156-5165. [Google Scholar]
- Choromanski K, Likhosherstov V, Dohan D, et al. Rethinking attention with performers[EB/OL]. [2023-06-21]. http://arxiv.org/abs/2009.14794. [Google Scholar]
- Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2): 84-90. [Google Scholar]
- Haque T U, Saber N N, Shah F M. Sentiment analysis on large scale Amazon product reviews[C]//2018 IEEE International Conference on Innovative Research and Development (ICIRD). New York: IEEE, 2018: 1-6. [Google Scholar]
- Harper F M, Konstan J A. The movielens datasets: History and context[J]. ACM Transactions on Interactive Intelligent Systems (TiiS), 2015, 5(4): 1-19. [Google Scholar]
- Xiao J, Ye H, He X N, et al. Attentional factorization machines: Learning the weight of feature interactions via attention networks[EB/OL]. [2023-06-21]. http://arxiv.org/abs/1708.04617. [Google Scholar]
- Song W P, Shi C C, Xiao Z P, et al. Autoint: Automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1161-1170. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.