Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 5, October 2024
Page(s) 419 - 429
DOI https://doi.org/10.1051/wujns/2024295419
Published online 20 November 2024
  1. Wei L, Zeng J, Chi M R, et al. Carbody elastic vibrations of high-speed vehicles caused by bogie hunting instability[J]. Vehicle System Dynamics, 2017, 55(9): 1321-1342. [NASA ADS] [CrossRef] [Google Scholar]
  2. Qu S, Wang J B, Zhang D F, et al. Failure analysis on bogie frame with fatigue cracks caused by hunting instability[J]. Engineering Failure Analysis, 2021, 128: 105584. [CrossRef] [Google Scholar]
  3. Sun J F, Meli E, Cai W B, et al. A signal analysis based hunting instability detection methodology for high-speed railway vehicles[J]. Vehicle System Dynamics, 2021, 59(10): 1461-1483. [NASA ADS] [CrossRef] [Google Scholar]
  4. Zhang X, Liu Y Q, Yang S P, et al. The first passage problem of a stochastic wheelset system[J]. Communications in Nonlinear Science and Numerical Simulation, 2024, 128: 107643. [CrossRef] [Google Scholar]
  5. Guo J Y, Shi H L, Luo R, et al. Bifurcation analysis of a railway wheelset with nonlinear wheel-rail contact[J]. Nonlinear Dynamics, 2021, 104(2): 989-1005. [CrossRef] [MathSciNet] [Google Scholar]
  6. Li J H, Cui N. Bifurcation, geometric constraint, chaos, and its control in a railway wheelset system[J]. Mathematical Methods in the Applied Sciences, 2023, 46(6): 7311-7332. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  7. Xiong L B, Lv L M, Jiang Y H, et al. Multi-fault classification of train wheelset system[J]. Journal of Physics: Conference Series, 2022, 2184(1): 012020. [NASA ADS] [CrossRef] [Google Scholar]
  8. Miao P C, Li D H, Yin S, et al. Double grazing bifurcations of the non-smooth railway wheelset systems[J]. Nonlinear Dynamics, 2023, 111(3): 2093-2110. [CrossRef] [Google Scholar]
  9. Zhang X, Liu Y Q, Liu P F, et al. Nonlinear dynamic analysis of a stochastic delay wheelset system[J]. Applied Mathematical Modelling, 2023, 119: 486-499. [CrossRef] [MathSciNet] [Google Scholar]
  10. von Wagner U. Nonlinear dynamic behaviour of a railway wheelset[J]. Vehicle System Dynamics, 2009, 47(5): 627-640. [CrossRef] [Google Scholar]
  11. Fofana M S. Delay dynamical systems and applications to nonlinear machine-tool chatter[J]. Chaos, Solitons & Fractals, 2003, 17(4): 731-747. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  12. Duan Z, Du B J, Zhang J G. Application of promotion process based on epidemic models considering bidirectionality[J]. Wuhan University Journal of Natural Sciences, 2022, 27(5): 383-395. [CrossRef] [EDP Sciences] [Google Scholar]
  13. Zhu W Q, Cai G Q. Introduction to Stochastic Dynamics[M]. Beijing: Science Press, 2017(Ch). [Google Scholar]
  14. Duan J Q. An Introduction to Stochastic Dynamics[M]. New York: Cambridge University Press, 2015. [Google Scholar]
  15. Chigansky P. An ergodic theorem for filtering with applications to stability[J]. Systems & Control Letters, 2006, 55(11): 908-917. [CrossRef] [MathSciNet] [Google Scholar]
  16. Wang F, Zhang J G. Response and bifurcation of fractional duffing oscillator under combined recycling noise and time-delayed feedback control[J]. Wuhan University Journal of Natural Sciences, 2023, 28(5): 421-432. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Wang P, Yang S P, Liu Y Q, et al. Research on hunting stability and bifurcation characteristics of nonlinear stochastic wheelset system[J]. Applied Mathematics and Mechanics, 2023, 44(3): 431-446. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.