Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 2, April 2025
|
|
---|---|---|
Page(s) | 205 - 212 | |
DOI | https://doi.org/10.1051/wujns/2025302205 | |
Published online | 16 May 2025 |
- Ratte H T. Bioaccumulation and toxicity of silver compounds: A review[J]. Environmental Toxicology and Chemistry, 1999, 18(1): 89-108. [Google Scholar]
- Ceresa A, Radu A, Peper S, et al. Rational design of potentiometric trace level ion sensors. A Ag+-selective electrode with a 100 ppt detection limit[J]. Analytical Chemistry, 2002, 74(16): 4027-4036. [Google Scholar]
- Huang S S, He S, Lu Y, et al. Highly sensitive and selective fluorescent chemosensor for Ag+ based on a coumarin-Se2N chelating conjugate[J]. Chemical Communications, 2011, 47(8): 2408-2410. [Google Scholar]
- Bianco C, Kezic S, Crosera M, et al. In vitro percutaneous penetration and characterization of silver from silver-containing textiles[J]. International Journal of Nanomedicine, 2015, 10: 1899-1908. [Google Scholar]
- Han F X, Patterson W D, Xia Y J, et al. Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study[J]. Water, Air, and Soil Pollution, 2006, 170(1): 161-171. [Google Scholar]
- Yuan J J, Xie Y Z, Han C, et al. Determination of trace element silver in animal serum, tissues and organs by microwave digestion-ICP-MS[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2533-2537(Ch). [Google Scholar]
- Guo W, Hu S H, Zhang J Y, et al. Elimination of oxide interferences and determination of ultra-trace silver in soils by ICP-MS with ion-molecule reactions[J]. Science of the Total Environment, 2011, 409(15): 2981-2986. [Google Scholar]
- Li C, Numata M, Takeuchi M, et al. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP[J]. Angewandte Chemie (International Edition), 2005, 44(39): 6371-6374. [Google Scholar]
- Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature, 1996, 382(6592): 607-609. [CrossRef] [PubMed] [Google Scholar]
- Lin C Y, Yu C J, Lin Y H, et al. Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles[J]. Analytical Chemistry, 2010, 82(16): 6830-6837. [Google Scholar]
- Wang G Q, Chen Z P, Chen L X. Mesoporous silica-coated gold nanorods: Towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating[J]. Nanoscale, 2011, 3(4): 1756-1759. [Google Scholar]
- Yang X L, Wei W, Jiang J H, et al. Conformational switching of G-quadruplexes as a label-free platform for the fluorescence detection of Ag+ and biothiols[J]. Analytical Methods, 2016, 8(2): 311-315. [Google Scholar]
- Lin Z Z, Li X H, Kraatz H B. Impedimetric immobilized DNA-based sensor for simultaneous detection of Pb2+, Ag+, and Hg2+[J]. Analytical Chemistry, 2011, 83(17): 6896-6901. [Google Scholar]
- Zhang J F, Lim C S, Cho B R, et al. A two-photon excited luminescence of water-soluble rhodamine-platinum(II) complex: Fluorescent probe specific for Hg2+ detection in live cell[J]. Talanta, 2010, 83(2): 658-662. [Google Scholar]
- Zhang J F, Kim J S. Small-molecule fluorescent chemosensors for Hg2+ ion[J]. Analytical Sciences, 2009, 25(11): 1271-1281. [Google Scholar]
- Ono A, Cao S Q, Togashi H, et al. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes[J]. Chemical Communications, 2008(39): 4825-4827. [CrossRef] [PubMed] [Google Scholar]
- Torigoe H, Kozasa T, Ono A. Detection of C: C mismatch base pair by fluorescence spectral change upon addition of silver (I) cation: Toward the efficient analyses of single nucleotide polymorphism[J]. Nucleic Acids Symposium Series, 2006, 50(1): 89-90. [Google Scholar]
- Wu Z T, Liu Y F, Liu Y Z, et al. A simple and universal "turn-on" detection platform for proteases based on surface enhanced Raman scattering (SERS)[J]. Biosensors and Bioelectronics, 2015, 65: 375-381. [Google Scholar]
- Li X Y, Wu Z T, Zhou X D, et al. Colorimetric response of peptide modified gold nanoparticles: An original assay for ultrasensitive silver detection[J]. Biosensors and Bioelectronics, 2017, 92: 496-501. [Google Scholar]
- Li B, Li K K, Xu W, et al. Micro-interfaces modulation by UV: Ozone substrate treatment for MPEA vapor fluorescence detection[J]. Nano Research, 2023, 16(3): 4055-4060. [Google Scholar]
- Chen P, Shan G G, Nie Q L, et al. Two-color emissive AIEgens with anti-Kasha property for dual-organelle imaging and phototherapy[J]. Science China Chemistry, 2024, 67(5): 1740-1752. [Google Scholar]
- He A X, Xia F F, Han D, et al. Self-assembled amphiphilic NIR-II emissive nano-micelles for imaging-guided photothermal therapy of colorectal cancer[J]. Science China Chemistry, 2024, 67(8): 2767-2774. [Google Scholar]
- Chai F, Wang C G, Wang T T, et al. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles[J]. ACS Applied Materials & Interfaces, 2010, 2(5): 1466-1470. [Google Scholar]
- Guo J H, Kong D M, Shen H X. Design of a fluorescent DNA IMPLICATION logic gate and detection of Ag+ and cysteine with triphenylmethane dye/G-quadruplex complexes[J]. Biosensors and Bioelectronics, 2010, 26(2): 327-332. [Google Scholar]
- Lee V W, Li H B, Lau T C, et al. Relative silver(I) ion binding energies of α-amino acids: A determination by means of the kinetic method[J]. Journal of the American Society for Mass Spectrometry, 1998, 9(8): 760-766. [Google Scholar]
- Forbes M W, Bush M F, Polfer N C, et al. Infrared spectroscopy of arginine cation complexes: Direct observation of gas-phase zwitterions[J]. J Phys Chem A, 2007, 111(46): 11759-11770. [Google Scholar]
- Remko M, Fitz D, Rode B M. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of l-histidine and zwitterionic l-histidine[J]. Amino Acids, 2010, 39(5): 1309-1319. [Google Scholar]
- Hong G S, Tabakman S M, Welsher K, et al. Metal-enhanced fluorescence of carbon nanotubes[J]. Journal of the American Chemical Society, 2010, 132(45): 15920-15923. [Google Scholar]
- Aslan K, Wu M, Lakowicz J R, et al. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms[J]. Journal of the American Chemical Society, 2007, 129(6): 1524-1525. [Google Scholar]
- Dong J, Zhang Z L, Zheng H R, et al. Recent progress on plasmon-enhanced fluorescence[J]. Nanophotonics, 2015, 4(1): 472-490. [Google Scholar]
- Bauch M, Toma K, Toma M, et al. Plasmon-enhanced fluorescence biosensors: A review[J]. Plasmonics, 2014, 9(4): 781-799. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.