Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 5, October 2024
Page(s) 391 - 396
DOI https://doi.org/10.1051/wujns/2024295391
Published online 20 November 2024

© Wuhan University 2024

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Introduction

Let n be a positive integer and n=/n={0,1,,n-1} be the residue classes ring modulo n.We set n× to be the set of units in n, i.e., n×={xn:gcd(x,n)=1}, and let n*=n\{0}. For n>1, we set rad(n) to be the radical of n, i.e., rad(n) is the product of all distinct prime factors of n. For any prime number p, we set vp(n) to be the p-adic valuation ofn. Let cn, in 1926, Brauer[1] derived an explicit expression of

x 1 + + x m c   ( m o d   n ) ,   w h e r e   x 1 , , x m n ×

The results in Ref. [1] answered a problem in Ref. [2]. Sun and Yang[3], in 2014, extended Brauer's theorem in Ref. [1] by deriving a more explicit expression for the number of solutions of the following diagonal congruence

k 1 x 1 + + k m x m c   ( m o d   n )   w i t h   x 1 , , x m n ×

For the diagonal quadratic congruence, Ramy[4] derived an expression for the number of solutions of

k 1 x 1 2 + + k m x m 2 c   ( m o d   n )   w i t h    x 1 , , x m n ×    a n d   g c d ( k 1 , , k m , n ) = 1

These results generalized the theorem of Yang and Tang[5]. For the following cubic congruence

k 1 x 1 3 + + k m x m 3 c   ( m o d   n )

Chowla et al[6] presented an explicit expression for the number of zeros of the above cubic congruence whenn=p is prime, c=0 and k1==km=1. In addition, Hu et al[7] gave a formula for the number of solutions of the cubic diagonal equation over finite field.

Naturally, we ask for the number of solutions of the following quartic congruence:

k 1 x 1 4 + + k m x m 4 c   ( m o d   n )

where k1,,km,cn and gcd(k1,,km,n)=1. We will investigate some special cases of the above congruence in this note, mainly focusing on their unit solutions. That is, we study the following congruence:

x 1 4 + + x m 4 0   ( m o d   n )   w i t h   x 1 , , x m n ×   a n d   n > 1   b e i n g   a n   o d d   i n t e g e r . (1)

We set Nm(n) to be the number of solutions of (1) and we will present the formulas of Nm(n). Explicitly, we have the following two main results.

Theorem 1   Let m be a positive integer and p be an odd prime. Then the following statements are true.

1) Let p1 (mod 4), we have

N 1 ( p ) = 0 , N 2 ( p ) = { 4 ( p - 1 ) ,     i f   p 1   ( m o d   8 ) , 0 ,                    i f   p 5   ( m o d   8 ) , N 3 ( p ) = { p 2 - 6 ( r + 2 ) p + ( 6 r + 11 ) ,     i f   p 1   ( m o d   8 ) , p 2 - 6 r p + ( 6 r - 1 ) ,                    i f   p 5   ( m o d   8 ) , N 4 ( p ) = { p 3 + 13 p 2 + ( 4 r 2 + 24 r + 7 ) p - ( 4 r 2 + 24 r + 21 ) ,     i f   p 1   ( m o d   8 ) , p 3 - 11 p 2 + ( 4 r 2 + 24 r + 7 ) p - ( 4 r 2 + 24 r - 3 ) ,       i f   p 5   ( m o d   8 ) ,

and for every m5, we have

(i) ifp1 (mod 8), then

N m ( p ) + 4 N m - 1 ( p ) + ( 6 - 6 p ) N m - 2 ( p ) + ( 8 p r - 12 p + 4 ) N m - 3 ( p ) + ( p 2 + 8 p r - 4 p r 2 - 6 p + 1 ) N m - 4 ( p ) = ( p - 1 ) m - 4 ( p 3 - 6 p 2 + ( 8 r + 1 ) p - 4 r 2 )

(ii) ifp5 (mod 8), then

N m ( p ) + 4 N m - 1 ( p ) + ( 6 + 2 p ) N m - 2 ( p ) + ( 8 p r + 4 p + 4 ) N m - 3 ( p ) + ( 9 p 2 + 8 p r - 4 p r 2 + 2 p + 1 ) N m - 4 ( p ) = ( p - 1 ) m - 4 ( p 3 + 2 p 2 + ( 8 r + 9 ) p - 4 r 2 )

whereris uniquely determined by p=r2+4t2, r1 (mod 4).

2) Letp3 (mod 4), then

N m ( p ) = 1 p ( ( p - 1 ) m + p - 1 2 ( ( p δ - 1 ) m + ( - p δ - 1 ) m ) ) ,

whereδ=η(-1)andηis the quadratic character ofp.

Corollary 1   Let n be an odd integer and m be a positive integer. Then

N m ( n ) = p | r a d ( n ) p ( m - 1 ) ( v p ( n ) - 1 ) N m ( p ) ,

whereNm(p)was obtained in Theorem 1.

The note is organized as follows. In Section 1, we present some preliminary lemmas. Then, we give the proofs of Theorem 1 and Corollary 1 in Section 2.

1 Preliminaries

In this section, we always set p as an odd prime integer. LetA be a finite set, we denote the number of elements ofA by |A|. For each integera, we set ap to be the element in the ring p with aap(mod p). We define Ta=xp*exp(2πiax4p). Let a1,,an be complex numbers. For any positive integer k, we denote the k-elementary symmetrical polynomial of a1,,an by σk(a1,,an), i.e.,

σ k ( a 1 , , a n ) = 1 j 1 j k n a j 1 a j k

In the following, we will present some lemmas which are needed in the proofs of our results.

Lemma 1[8] Letn1,,nr+ be pairwise relatively prime andf(x1,,xm)[x1,,xm].LetNibe the number of solutions off(x1,,xm)0 (mod ni) and letNbe the number ofsolutions off(x1,,xm)0 (mod n1,,nr). Then N=N1,,Nr.

Lemma 2[8] Letap,then

b p e x p ( 2 π i a b p ) = { p ,          i f   p | a , 0 ,        i f   p a .

Next, we present the following famous theorem[9].

Lemma 3[9] In the notation of above statement, thenT1+1,Tg+1,Tg2+1,Tg3+1are theroots of equationx4-6px2+8prx+p2-4pr2=0ifp1 (mod 8), or the roots of equation x4+2px2+8prx+9p2-4pr2=0ifp5 (mod 8),whereris uniquely determined byp=r2+4t2,r1 (mod 4)andgis a primitive root modulop.

Lemma 4   In the notation of above statement, ifS={1,g,g2,g3}withga primitive root modulop,then there exists a uniquebSsatisfyingTa=Tbfor eachap*.

Proof   For eachap* ,becausegis a primitive root modulop,agc (mod p)with c (0c<p)is true. Suppose c=4q+r,whereq,r , 0r<3. One has

T a = x p * e x p ( 2 π i g c x 4 p ) = x p * e x p ( 2 π i g r ( g q x ) 4 p ) = T g r .

This completes the proof of Lemma 4.

Let F(x1,,xm) be a polynomial over p. We denote the number of zeros ofF(x1,,xm)=0by N(F=0). That is, N(F=0)=|{(x1,,xm)pm:F(x1,,xm)=0}|. Then the following lemma is true.

Lemma 5   Let  p3 (mod 4)andδ=η(-1)with ηa quadratic character ofp. One has

A m ( p ) = N ( x 1 4 + + x m 4 = 0 ) = p m - 1 + 1 + ( - 1 ) m 2 ( p - 1 ) p m - 2 2 δ m .

Proof   Letk+,cpand letφbe a multiplicative character ofpof order d=gcd(k,p-1).It is famous that (for example, Ref. [10]) N(xk=c)=j=0d-1φj(c). Since p3 (mod 4),one hasN(x4=c)=N(x2=c). Hence,

N ( x 1 4 + + x m 4 = 0 ) = ( x 1 , , x m ) p m x 1 4 + + x m 4 = 0 1 = ( x 1 , , x m ) p m c 1 + + c m = 0 N ( x 1 4 = c 1 ) N ( x m 4 = c m )

= ( x 1 , , x m ) p m c 1 + + c m = 0 N ( x 1 2 = c 1 ) N ( x m 2 = c m ) = ( x 1 , , x m ) p m x 1 2 + + x m 2 = 0 1 = N ( x 1 2 + + x m 2 = 0 ) .

Then the desired results are true by Theorem 6.26 and Theorem 6.27 in Ref. [10].

2 Proofs of Theorem 1 and Corollary 1

In this section, we present the proofs of Theorem 1 and Corollary 1.

Proof of Theorem 1   The proof will be divided into two cases.

Case 1 p 1   ( m o d   4 ) . From Lemma 4 and Lemma 2, one can get

N m ( p ) = 1 p ( x 1 , , x m ) ( p * ) m a = 0 p - 1 e x p ( 2 π i a ( x 1 4 + + x m 4 ) p ) = ( p - 1 ) m p + 1 p a = 1 p - 1 ( x 1 , , x m ) ( p * ) m e x p ( 2 π i a ( x 1 4 + + x m 4 ) p )

= ( p - 1 ) m p + 1 p a = 1 p - 1 x p * ( e x p ( 2 π i a x 4 p ) ) m = ( p - 1 ) m p + p - 1 4 p ( T 1 m + T g m + T g 2 m + T g 3 m ) (2)

If  p1 (mod 8), from Lemma 3, it follows that T1,Tg,Tg2,Tg3 are roots of

x 4 + 4 x 3 + ( 6 - 6 p ) x 2 + ( 8 p r - 12 p + 4 ) x + ( p 2 + 8 p r - 4 p r 2 - 6 p + 1 ) = 0 (3)

wherer satisfies the condition in Lemma 3. Therefore,

{ σ 1 ( T 1 , T g , T g 2 , T g 3 ) = - 4 , σ 2 ( T 1 , T g , T g 2 , T g 3 ) = 6 - 6 p , σ 3 ( T 1 , T g , T g 2 , T g 3 ) = 12 p - 8 p r - 4 , σ 4 ( T 1 , T g , T g 2 , T g 3 ) = p 2 + 8 p r - 4 p r 2 - 6 p + 1 . (4)

Similarly, if p1 (mod 8), from Lemma 3, it follows that T1,Tg,Tg2,Tg3 are roots of

x 4 + 4 x 3 + ( 6 + 2 p ) x 2 + ( 8 p r + 4 p + 4 ) x + ( 9 p 2 + 8 p r - 4 p r 2 + 2 p + 1 ) = 0 (5)

wherer satisfies the condition in Lemma 3, which implies that

{ σ 1 ( T 1 , T g , T g 2 , T g 3 ) = - 4 , σ 2 ( T 1 , T g , T g 2 , T g 3 ) = 6 + 2 p , σ 3 ( T 1 , T g , T g 2 , T g 3 ) = - 4 p - 8 p r - 4 , σ 4 ( T 1 , T g , T g 2 , T g 3 ) = 9 p 2 + 8 p r - 4 p r 2 + 2 p + 1 . (6)

Now, using (2), (4) and (6), we can get the explicit formula of  Nm(p). First, it is easy to see that N1(p)=0. Next, by (2), one has

N 2 ( p ) = ( p - 1 ) 2 p + p - 1 4 p ( T 1 2 + T g 2 + T g 2 2 + T g 3 2 ) = ( p - 1 ) 2 p + p - 1 4 p ( σ 1 ( T 1 , T g , T g 2 , T g 3 ) 2 - 2 σ 2 ( T 1 , T g , T g 2 , T g 3 ) ) .

By (4), (6) and direct calculation, one has

N 2 ( p ) = { 4 ( p - 1 ) ,     i f   p 1 ( m o d   8 ) , 0 ,                   i f   p 5 ( m o d   8 ) .

Similarly, we can get that

N 3 ( p ) = ( p - 1 ) 3 p + p - 1 4 p ( T 1 3 + T g 3 + T g 2 3 + T g 3 3 ) = ( p - 1 ) 3 p + p - 1 4 p ( σ 1 ( T 1 , T g , T g 2 , T g 3 ) 3 + 3 σ 3 ( T 1 , T g , T g 2 , T g 3 ) - 3 σ 1 ( T 1 , T g , T g 2 , T g 3 ) σ 2 ( T 1 , T g , T g 2 , T g 3 ) ) = { p 2 - 6 ( r + 2 ) p + ( 6 r + 11 ) ,     i f   p 1   ( m o d   8 ) , p 2 - 6 r p + ( 6 r - 1 ) ,                i f   p 5 ( m o d   8 ) ,

and

N 4 ( p ) = ( p - 1 ) 4 p + p - 1 4 p ( T 1 4 + T g 4 + T g 2 4 + T g 3 4 ) = ( p - 1 ) 4 p + p - 1 4 p ( σ 1 ( T 1 , T g , T g 2 , T g 3 ) 4 - 4 σ 1 ( T 1 ,   T g , T g 2 , T g 3 ) 2 σ 2 ( T 1 , T g , T g 2 , T g 3 ) + 4 σ 1 ( T 1 , T g , T g 2 , T g 3 ) σ 3 ( T 1 , T g , T g 2 , T g 3 ) + 2 σ 2 ( T 1 , T g , T g 2 , T g 3 ) 2 - 4 σ 4 ( T 1 , T g , T g 2 , T g 3 ) ) = { p 3 + 13 p 2 + ( 4 r 2 + 24 r + 7 ) p - ( 4 r 2 + 24 r + 21 ) ,     i f   p 1 ( m o d   8 ) , p 3 - 11 p 2 + ( 4 r 2 + 24 r + 7 ) p - ( 4 r 2 + 24 r - 3 ) ,     i f   p 5 ( m o d   8 ) .

Now, let a{1,g,g2,g3}. For each integer m with m5, using (3) and (5), one has

T a m + 4 T a m - 1 + ( 6 - 6 p ) T a m - 2 + ( 8 p r - 12 p + 4 ) T a m - 3 + ( p 2 + 8 p r - 4 p r 2 - 6 p + 1 ) T a m - 4 = 0 (7)

if  p1 (mod 8), and

T a m + 4 T a m - 1 + ( 6 + 2 p ) T a m - 2 + ( 8 p r + 4 p + 4 ) T a m - 3 + ( 9 p 2 + 8 p r - 4 p r 2 + 2 p + 1 ) T a m - 4 = 0 (8)

if p5 (mod 8), where r satisfies the condition in Lemma 3.

If p1 (mod 8), then it follows from (2) and (7) that

( N m ( p ) - ( p - 1 ) m p ) + 4 ( N m - 1 ( p ) - ( p - 1 ) m - 1 p ) + ( 6 - 6 p ) ( N m - 2 ( p ) - ( p - 1 ) m - 2 p ) + ( 8 p r - 12 p + 4 ) ( N m - 3 ( p ) - ( p - 1 ) m - 3 p ) + ( p 2 + 8 p r - 4 p r 2 - 6 p + 1 ) ( N m - 4 ( p ) - ( p - 1 ) m - 4 p ) = 0 .

Therefore, we have

N m ( p ) + 4   N m - 1 ( p ) + ( 6 - 6 p ) N m - 2 ( p ) + ( 8 p r - 12 p + 4 ) N m - 3 ( p ) + ( p 2 + 8 p r - 4 p r 2 - 6 p + 1 ) N m - 4 ( p ) = ( p - 1 ) m - 4 ( p 3 - 6 p 2 + ( 8 r + 1 ) p - 4 r 2 )

as expected.

If p5 (mod 8), one can use the similar argument to get the desired result by (2) and (8), and we omit it here.

Theorem 1   is proved in this case.

Case 2 p 3   ( m o d   4 ) . For each integer i with 1im, define

A m , i ( p ) = { ( x 1 , , x i - 1 , 0 , x i + 1 , , x m ) ( p ) m :   x 1 4 + + x m 4 0 ( m o d   p ) } .

By principle of cross-classification, one can get

N m ( p ) = | A m ( p ) i = 1 m A m , i ( p ) | = | A m ( p ) | + t = 1 m ( - 1 ) t 1 i 1 < < i t m | j = 1 t A m , i j ( p ) | (9)

For any integer i with 1im-1, and for each t-tuple integer (i1,,it) with 1i1<<itm, one can deduce that

1 i 1 < < i t m | j = 1 t A m , i j ( p ) | = ( m t ) | A m - t ( p ) | (10)

Thus by Lemma 5, (9) and (10) one has

N m ( p ) = | A m ( p ) | + t = 1 m ( - 1 ) t ( m t ) | A m - t ( p ) | = | A m ( p ) | + t = 1 m - 1 ( - 1 ) t ( m t ) | A m - t ( p ) | + ( - 1 ) m = ( - 1 ) m + 1 p ( ( p - 1 ) m - ( - 1 ) m + p - 1 2 ( ( p δ - 1 ) m + ( - p δ - 1 ) m - 2 ( - 1 ) m ) ) = 1 p ( ( p - 1 ) m + p - 1 2 ( ( p δ - 1 ) m + ( - p δ - 1 ) m ) ) .

The proof of Theorem 1 is completed.

Finally, we present the proof of Corollary 1.

Proof of Corollary 1   Let n=p|rad(n)pvp(n) be the prime decomposition of n. It follows that Nm(n)=p|rad(n)Nm(pvp(n)) from Lemma 1. It is easy to obtain Nm(n) from Nm(pvp(n)).

Let (y1,,ym) be a solution of x14++xm40 (mod pk) with gcd(yi ,pk)=1,1im. It is easy to get that

( y 1 + k 1 p k ) 4 + + ( y m + k m p k ) 4 0   ( m o d   p k + 1 ) , k 1 , , k m p ,

if and only if

y 1 4 + + y m 4 + 4 ( y 1 3 k 1 p k + + y m 3 k m p k ) 0   ( m o d   p k + 1 ) (11)

Since gcd(p,4)=gcd(yi ,p)=1 with 1im, for any (m-1)-tuple (k1,,km-1), there is a unique kmp such that (11) holds. Therefore, we have

N m ( p k + 1 ) = p m - 1 N m ( p k ) .

It then follows that

N m ( p v p ( n ) ) = p ( m - 1 ) ( v p ( n ) - 1 ) N m ( p ) .

The proof of Corollary 1 is completed.

References

  1. Brauer A. Losung der Aufgabe 30[J]. Jahresber Dtsch Math-Ver, 1926, 35: 92-94. [Google Scholar]
  2. Rademacher H. Aufgabe 30[J]. Jahresbe Dtsch Math-Ver, 1925, 34:158. [Google Scholar]
  3. Sun C F, Yang Q H. On the sumset of atoms in cyclic groups[J]. International Journal of Number Theory, 2014, 10(6): 1355-1363. [CrossRef] [MathSciNet] [Google Scholar]
  4. Ramy T E. On the number of incongruent solutions to a quadratic congruence over algebraic integers[J]. International Journal of Number Theory, 2019, 15(1):105-130. [CrossRef] [MathSciNet] [Google Scholar]
  5. Yang Q H, Tang M. On the addition of squares of units and nonunits modulo Formula [J]. Journal of Number Theory, 2015, 155: 1-12. [CrossRef] [MathSciNet] [Google Scholar]
  6. Chowla S, Cowles J, Cowles M. On the number of zeros of diagonal cubic forms[J]. Journal of Number Theory, 1977, 9(4): 502-506. [CrossRef] [MathSciNet] [Google Scholar]
  7. Hu S N, Wang S H, Li Y Y, et al. Note on the number of solutions of cubic diagonal equations over finite fields [J]. Wuhan University Journal of Natural Sciences, 2023, 28(5): 369-372. [CrossRef] [EDP Sciences] [Google Scholar]
  8. Apostol T M. Introduction to Analytic Number Theory[M]. New York: Springer-Verlag, 1976. [Google Scholar]
  9. Berndt B C, Evans R J, Williams K S. Gauss and Jacobi Sums[M]. New York: John Wiley & Sons, Inc, 1999. [Google Scholar]
  10. Lidl R, Niederreiter H. Finite Fields: Encyclopedia of Mathematics and Its Applications[M]. Cambridge: Cambridge University Press, 1997. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.