Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 5, October 2025
Page(s) 463 - 470
DOI https://doi.org/10.1051/wujns/2025305463
Published online 04 November 2025

© Wuhan University 2025

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Introduction

Let Rn,n2, be the n-dimensional Euclidean spaces. This paper aims to investigate the compactness of the commutator of the Adams type bilinear fractional integral operator (or Riesz potential) Iα,0<α<n. The bilinear fractional integral operator Iα is defined by

I α ( f , g ) ( x ) = R n R n f ( y ) g ( z ) ( | x - y | + | x - z | ) 2 n - α d y d z ,

where xRn,and f,g are locally integrable functions.

When considering a bilinear operator Iα(f,g), we define the commutators {[b,Iα]i}i=12 to be

[ b , I α ] 1 ( f , g ) = b I α ( f , g ) - I α ( b f , g ) ,

and

[ b , I α ] 2 ( f , g ) = b I α ( f , g ) - I α ( f , b g ) ,

where bLloc1(Rn).

Riesz[1] developed a theory of multidimensional fractional integration and derived a powerful method for solving linear differential equations of the hyperbolic type from it. In 1978, Uchiyama[2] showed that linear commutators of Calderón-Zygmund operators and pointwise multiplication with a symbol belonging to an appropriate subspace of the John-Nirenberg space (BMO(Rn)) are compact. For a proof of the boundedness of multilinear fractional integrals, see the papers by Chen and Xue[3] and Chen and Wu[4]. Bényi et al[5] established the compactness of commutators of bilinear fractional integrals from Lp(Rn)×Lq(Rn) to Lr(Rn) with bBMO(Rn). In 2015, Ding and Mei[6] obtained the compactness of commutators of bilinear Riesz potential on Morrey spaces, from L(p1,λ1)(Rn)×L(p2,λ2)(Rn) to L(q,λ)(Rn) with bBMO(Rn). Subsequently, the compactness of commutators of multilinear operators was studied extensively, see Refs. [7-10].

On the other hand, Arai and Nakai[11-12] studied the commutators [b,Iρ] of the fractional integral operator Iρ on the generalized Morrey spaces and showed that if b is a function of generalized Campanato spaces ε(1,ψ)(Rn), which contain the BMO(Rn) and Lipschitz spaces as special examples, then [b,Iρ] is bounded and compact on the generalized Morrey spaces. The corresponding result for the commutator of a general fractional integral was also obtained.

Based on the results above, it is natural to ask the following question:

Question: What are the mapping properties of [b,Iα]i,i=1,2, on the generalized Morrey spaces when b is a function in the generalized Campanato spaces? Moreover, whether it is compact or not in generalized Morrey spaces?

The main purpose of this paper is to address this question. To state our main results, we first recall some relevant definitions and notations. Let B(x,r) be the open ball centered at xRn and of radius r, that is,

B ( x , r ) = { y R n : | y - x | < r } .

For a measurable set ERn, we denote by |E| and χE the Lebesgue measure of E and the characteristic function of E, respectively. For a function fLloc1(Rn) and a ball B, let fB=1|B|Bf(y)dy.

Moreover, for a measurable function ϕ: Rn×(0,)(0,), while a ball B=B(x,r), we denote by ϕ(B)=ϕ(x,r).

Definition 1[11] Let ϕ(x,r) be a positive measurable function on Rn×(0,) and p[1,), the generalized Morrey space L(p,ϕ)(Rn) is denoted by:

L ( p , ϕ ) ( R n ) : = { f : f L ( p , ϕ ) ( R n ) = s u p B ( 1 ϕ ( B ) | B | B | f ( y ) | p d y ) 1 / p < } ,

where the supremum is taken over all balls B in Rn.

We know that fL(p,ϕ)(Rn) is a norm and L(p,ϕ)(Rn) is a Banach space. More generally, if ϕλ(x,r)=rλ for λ[-n,0], then L(p,ϕ)(Rn) is the classical Morrey space, that is,

f L ( p , ϕ λ ) ( R n ) = s u p B ( 1 ϕ λ ( B ) | B | B | f ( y ) | p d y ) 1 / p = s u p B = B ( x , r ) ( 1 r λ | B | B | f ( y ) | p d y ) 1 / p ,

In particular, L(p,ϕ-n)(Rn)=Lp(Rn) and L(p,ϕ0)(Rn)=L(Rn).

We recall the definition of BMO(Rn), denoted by

B M O ( R n ) : = { b L l o c 1 ( R n ) : b B M O ( R n )

= s u p B 1 | B | B | b ( x ) - b B | d x < } ,

where the supremum is taken over all balls BRn.

We also consider the generalized Campanato spaces with variable growth condition, which are defined as follows.

Definition 2[11] Let ψ(x,r) be a positive measurable function on Rn×(0,) and p[1,), the generalized Campanato spaces ε(p,ψ)(Rn) are denoted by

ε ( p , ψ ) ( R n ) : = { f L l o c 1 ( R n ) : f ε ( p , ψ ) ( R n ) < } ,

where fε(p,ψ)(Rn)=supB(1ψ(B)|B|B|f(y)-fB|pdy)1/p, the supremum is taken over all balls BRn.

It is easy to check that fε(p,ψ)(Rn) is a normed modulo constant functions and thereby ε(p,ψ)(Rn) is a Banach space. If p=1 and ψ1, then ε(p,ψ)(Rn)=BMO(Rn). If p=1 and ψ(x,r)=rα(0<α1), then coincide with Lipα(Rn).

We say that a function θ:Rn×(0,)(0,) satisfies the doubling condition if there exists a positive constant C, for all xRn and r,s(0,), such that

1 C θ ( x , r ) θ ( x , s ) C , i f 1 2 r s 2 . (1)

We say that θ is almost increasing (resp. almost decreasing) if there exists a positive constant C, for all xRn and r,s(0,), such that θ(x,r)Cθ(x,s), (resp.

θ ( x , s ) C θ ( x , r ) ) ,   i f   r s .

We also consider the following condition: there exists a positive constant C, for all x,yRn and r(0,), such that

1 C θ ( x , r ) θ ( y , r ) C , i f | x - y | r . (2)

For two functions θ,κ:Rn×(0,)(0,), we write θ~κ if there exists a positive constant C, for all xRn and r(0,), such that

1 C θ ( x , r ) κ ( x , r ) C . (3)

Definition 3 (i)   Let ςdec be the set of all functions ϕ:Rn×(0,)(0,) such that ϕ is almost decreasing and that rϕ(x,r)rn is almost increasing. That is, there exists a positive constant C,for all xRn and r,s(0,), such that

C ϕ ( x , r ) ϕ ( x , s ) , ϕ ( x , r ) r n C ϕ ( x , s ) s n , i f r < s .

(ii) Let ςinc be the set of all functions ϕ:Rn×(0,)(0,) such that ϕ is almost increasing and that rϕ(x,r)/r is almost decreasing. That is, there exists a positive constant C, for all xRn and r,s(0,), such that ϕ(x,r)Cϕ(x,s),Cϕ(x,r)/rϕ(x,s)/s,ifr<s.

Remark 1 (i)   If ϕςdec or ϕςinc, then ϕ satisfies the doubling condition (1).

(ii) It follows from Ref. [11] that for ϕςdec, if ϕ satisfies

l i m r + 0 ϕ ( x , r ) = , l i m r ϕ ( x , r ) = 0 , (4)

then there exists ϕ˜ςdec such that ϕ~ϕ˜ and that ϕ˜(x,) is continuous, strictly decreasing and bijective from (0,) to itself for each x.

(iii) Assume that ϕςdec and there exists a positive constant C, for all xRn and r(0,),we get

r ϕ ( x , t ) t d t C ϕ ( x , r ) . (5)

For fL(p1,ϕ1)(Rn),gL(p2,ϕ2)(Rn),1<p1,p2<, we denote fχ2B(y):=f1(y), fχ(2B)C(y):=f2(y), gχ2B(z):=g1(z),

g χ ( 2 B ) C ( z ) : = g 2 ( z ) , We define Ια(f,g)(x) on each ball B by

Ι α ( f , g ) ( x ) = Ι α ( f 1 , g 1 ) ( x ) + Ι α ( f 1 , g 2 ) ( x ) + Ι α ( f 2 , g 1 ) ( x ) + Ι α ( f 2 , g 2 ) ( x ) . (6)

Note that Ια(f1,g1)(x) is well defined since fχ2BLp1(Rn), and gχ2BLp2(Rn), it is easy to check that Iα(f1,g2)(x), Iα(f2,g1)(x), and Iα(f2,g2)(x) converge absolutely. Iα(f,g)(x) defined in (6) is independent of the choice of the ball containing x. Moreover, we can show that Iα(f,g)(x) is bounded from L(p1,ϕ1)(Rn)×L(p2,ϕ2)(Rn) to L(p˜,ϕ)(Rn), see Lemma 4.1 in Ref. [13].

For fL(p1,ϕ1)(Rn), gL(p2,ϕ2)(Rn),1<p1,p2<, employing the notation as in (6), we will define [b,Iα]i(f,g)(x),i=1,2,on each ball B by

[ b , I α ] i ( f , g ) ( x ) = [ b , I α ] i ( f 1 , g 1 ) ( x ) + [ b , I α ] i ( f 1 , g 2 ) ( x ) + [ b , I α ] i ( f 2 , g 1 ) ( x ) + [ b , I α ] i ( f 2 , g 2 ) ( x ) . (7)

Let bε(1,ψ)(Rn), note that [b,Iα]i(f1,g1)(x) is well defined since fχ2BLp1(Rn), and gχ2BLp2(Rn), it is easy to check that [b,Iα]i(f1,g2)(x), [b,Iα]i(f2,g1)(x), and

[ b , I α ] i ( f 2 , g 2 ) ( x ) converge absolutely, then (7) is well defined. Moreover, we can show that [b,Iα]i(f,g)(x), defined in (7), is independent of the choice of the ball containing x,see Lemma 4.2 in Ref. [13]. Furthermore, we can show that [b,Iα]i(f,g)(x),i=1,2, is bounded from L(p1,ϕ1)(Rn)×L(p2,ϕ2)(Rn) to L(q,ϕ)(Rn). See Lemma 1 for the details.

For the commutators [b,Iα]i(f,g)(x),i=1,2, we have Lemma 1.

Lemma 1[13] Let p,p1,p2,q(1,),p<q,1p+1q<1,α(0,2n) satisfies α/n<1/p,1/q=1/p-α/n, and ϕ,ϕ1,ϕ2,ψ:Rn×(0,)(0,).

(i) Assume that ϕ,ϕ1,ϕ2ςdec and ψςinc, ψ satisfies (2), ϕ,ϕ1,ϕ2 satisfy (5) and there exist positive constants C0,C1 and an exponent p˜(p,q], for all xRn and r(0,), we get

1 p 1 + 1 p 2 = 1 p , (8)

ϕ 1 1 / p 1 ϕ 2 1 / p 2 = ϕ 1 / p , (9)

0 r t α - 1 d t ϕ ( x , r ) 1 / p + r t α - 1 ϕ ( x , t ) 1 / p d t C 0 ϕ ( x , r ) 1 / p ˜ , (10)

ψ ( x , r ) ϕ ( x , r ) 1 / p ˜ C 1 ϕ ( x , r ) 1 / q (11)

If bε(1,ψ)(Rn), then [b,Iα]i(f,g)(x),i=1,2 is well defined for all fL(p1,ϕ1)(Rn),gL(p2,ϕ2)(Rn). That is, for all f,g, there exists a positive constant C, independent of b,f,g, such that

[ b , I α ] i ( f , g ) L ( q , ϕ ) C b ε ( 1 , ψ ) f L ( p 1 , ϕ 1 ) g L ( p 2 , ϕ 2 ) .

(ii) Conversely, assume that ϕ satisfies (2), and there exist positive constants C2, for all xRn and r(0,),we get

C 2 ψ ( x , r ) r α ϕ ( x , r ) 1 / p ϕ ( x , r ) 1 / q . (12)

If [b,Iα]i(f,g)(x),i=1,2, is bounded from L(p1,ϕ1)(Rn)×L(p2,ϕ2)(Rn) to L(q,ϕ)(Rn), then bε(1,ψ)(Rn), such that bε(1,ψ)[b,Iα]i(f,g)L(p1,ϕ1)×L(p2,ϕ2)L(q,ϕ).

In this paper, we use the method of Arai and Nakai[12], and give sufficient conditions for the compactness of commutators of bilinear fractional integral operator.

We denote by Ccomp(Rn)¯ε(1,ψ)(Rn), the closure of Ccomp(Rn) with respect to ε(1,ψ)(Rn). If ψ1, then ε(1,ψ)(Rn)=BMO(Rn) and Ccomp(Rn)¯BMO(Rn)=CMO(Rn).

In order to obtain the compactness of the commutators [b,Iα]i(f,g)(x),i=1,2, we consider the following condition on ψ: there exists a positive constant C, for all xRn and r(0,), such that

r ψ ( x , t ) t 2 d t C ψ ( x , r ) r . (13)

In the end, the main results of this work are stated as follows.

Theorem 1   Let p,p1,p2(1,), p<q and ϕ,ϕ1,ϕ2:Rn×(0,)(0,), assume the same condition as Lemma 1, ϕ and ψ satisfy (2) and (13), respectively. If bCcomp(Rn)¯ε(1, ψ)(Rn), then [b,Iα]i(f,g)(x),i=1,2, are compact from L(p1,ϕ1)(Rn)×L(p2,ϕ2)(Rn) to L(q,ϕ)(Rn).

Remark 2   From the theorem above, we have the following several corollaries.

1) Take ϕ(x,r)=rλ, λ(-n,0), ψ(x,r)1. Then we have the result for Morrey spaces L(p1,ϕ1)(Rn)=L(p1,λ1)(Rn), L(p2,ϕ2)(Rn)=L(p2,λ2)(Rn), ε(1,ψ)(Rn)=BMO(Rn). This case is known by Ding and Mei[6].

2) Take ϕ(x,r)=r-n, ψ(x,r)1. Then L(p1,ϕ1)(Rn)=Lp1(Rn), L(p2,ϕ2)(Rn)=Lp2(Rn), ε(1,ψ)(Rn)=BMO(Rn). This is the result obtained by Bényi et al[14].

Remark 3   Under the assumption of Theorem 1, by Ref. [13], for all fL(p1,ϕ1)(Rn), gL(p2,ϕ2)(Rn), and a.e.xRn, then we get

[ b , I α ] i ( f , g ) ( x ) = l i m ε + 0 ( | x - y | 2 + | x - z | 2 ) 1 2 > ε ( b ( x ) - b ( y ) ) | f ( x ) g ( z ) | ( | x - y | + | x - z | ) 2 n - α d y d z , (14)

where i=1,2.

The rest of this paper is organized as follows. In Section 1, we will recall Musielak-Orlicz spaces and establish some auxiliary lemmas. The proof of Theorem 1 will be given in Section 2. In Section 3, we discuss the compactness of the commutators of the m-linear fractional integral operator. Finally, we make some conventions on notation. Throughout this paper, we always use C to denote a positive constant that is independent of the main parameters involved but whose value may differ from line to line. Constants with subscripts, such as Cp ,are dependent on the subscripts. We denote fg if fCg, and f~g if fgf. For 1p, p' is the conjugate index of p, and 1p+1p'=1.EC=Rn\E is the complementary set of any measurable subset E of Rn.

1 Preliminaries

In order to obtain our result, we recall Young functions and Musielak-Orlicz spaces. Let ΦY be the set of all Young functions, see Ref. [15].

Let ΦYυ be the set of all Φ:Rn×[0,][0,] such that Φ(x,) is a Young function for every xRn, and that Φ(,t) is measurable on Rn for every t[0,].

For ΦΦYυ and xRn, let

Φ - 1 ( x , u ) = { i n f { t 0 : Φ ( x , t ) > u } , u [ 0 , ) , ,    u = .

We also define the complementary function Φ˜:Rn×[0,][0,] by

Φ ˜ ( x , t ) = { s u p { t u - Φ ( x , u ) : u [ 0 , ) } , t [ 0 , ) , ,   t = .

Definition 4   (Musielak-Orlicz space) For a function ΦΦYυ, let

L Φ ( R n ) = { f : R n Φ ( x , ε | f ( x ) | d x < , f o r   s o m e   ε > 0 } ,

f L Φ = i n f { λ > 0 : R n Φ ( x , | f ( x ) | λ ) d x 1 } .

Then LΦ is a norm, which is called the Luxemburg-Nakano norm, and thereby LΦ(Rn) is a Banach space.

Lemma 2[12] Let 1q< and ϕ:Rn×(0,)(0,), assume that ϕ is in ϕςdec and satisfies (2) and (4). Then there exists a function Φq,ϕΦYυ such that

L Φ q , ϕ ( R n ) L ( q , ϕ ) ( R n ) ,   a n d   f L ( q , ϕ ) C f L Φ q , ϕ ,

where Φq,ϕ(x,t)=Φϕ(x,tq), and C is a positive constant independent of fLΦq,ϕ(Rn).

Remark 4[12] By Lemma 2, we see that, for all balls B, then χBLΦq,ϕ1ϕ(B)1/q.

For a function ρ:Rn×(0,)(0,),the generalized bilinear Hardy-Littlewood maximal operator is defined by

Μ ρ ( f , g ) ( x ) = s u p x B ρ ( B ) 1 | B | 2 B | f ( y ) | d y B | g ( z ) | d z .

Clearly, if ρ1, then Μρ(f,g)(x) is the bilinear of the Hardy-Littlewood maximal operator Μ, and if ρ(B)=|B|α/n, then Μρ(f,g)(x) is the fraction maximal operator Μα defined by

Μ α ( f , g ) ( x ) = s u p x B 1 | B | 2 - α / n B | f ( y ) | d y B | g ( z ) | d z .

The boundedness of Μρ is the consequence of the following theorems.

Theorem 2[16] Let p,p1,p2,q(1,),p<q satisfies (8). Let ρ,ϕ,ϕ1,ϕ2:Rn×(0,)(0,).

Assume that ϕ,ϕ1,ϕ2 are in ςdec and satisfy (4) and (9). Assume also that there exists a positive constant C0, for all xRn and r(0,), such that

ρ ( x , r ) ϕ ( x , r ) 1 / p C 0 ϕ ( x , r ) 1 / q , (15)

then Μρ(f,g) is bounded from L(p1,ϕ1)(Rn)×L(p2,ϕ2)(Rn) to L(q,ϕ)(Rn).

In order to obtain the compactness of the commutators, [b,Iα]i(f,g)(x),i=1,2, we construct the integral operator as follows:

T 0 ( f , g ) ( x ) = ( n ) 2 K 0 ( x , y , z ) f ( y ) g ( z ) d y d z , x R n , (16)

for a kernel function K0: (Rn)3C. In this section, we will prove the following proposition.

Proposition 1   Let p,p1,p2,q(1,),pq and ϕ, ϕ1, ϕ2:Rn×(0,)(0,), assume that ϕ, ϕ1, ϕ2 are in ςdec and satisfy (2) and (4). If K0Lcomp((Rn)3), then T0 defined by (16) is a compact operator from L(p1,ϕ1)(Rn)×L(p2,ϕ2)(Rn) to L(q,ϕ)(Rn).

To prove Proposition 1, we use Lemma 2 and the following Lemma 3.

Lemma 3   Let ΦΦYυ, if

K 0 L Φ ( R n ; L p ' ( ( R n ) 2 ) ) : = ( ( R n ) 2 | K 0 ( , y , z ) | p ' d y d z ) 1 / p ' L Φ < ,

then T0 is compact from Lp1(Rn)×Lp2(Rn) to LΦ(Rn), and

T 0 L p 1 × L p 2 L Φ K 0 L Φ ( R n ; L p ' ( ( R n ) 2 ) ) , (17)

where Lp1×Lp2LΦ is the operator norm from Lp1(Rn)×Lp2(Rn) to LΦ(Rn).

Proof   By Hölder's inequality, we have

| T 0 ( f , g ) ( x ) | ( R n ) 2 | K 0 ( x , y , z ) | | f ( y ) g ( z ) | d y d z

( ( R n ) 2 | K 0 ( x , y , z ) | p ' d y d z ) 1 / p ' f L p 1 g L p 2 ,

which implies

T 0 ( f , g ) L Φ ( ( R n ) 2 | K 0 ( , y , z ) | p ' d y d z ) 1 / p ' L Φ f L p 1 g L p 2 .

This proofs (17). Next, we show the compactness. For any ε>0, there exists a finite number of bounded measurable sets E1,E2,,Ek,F11,,F1k,F21,,F2k, and z11,,z1k,z21,,z2kC, such that

K 0 - K 0 , ε L Φ ( R n ; L p ' ( ( R n ) 2 ) ) < ε ,

K 0 , ε ( x , y , z ) = j = 1 k { z 1 j χ E j ( x ) χ F 1 j ( y ) + z 2 j χ E j ( x ) χ F 2 j ( z ) } .

This means that T0 can be approximated by a finite rank operator T0,ε, whose kernel is K0,ε, which implies that T0 is compact.

Proof of Proposition 1   For q and ϕ, take a function Φq,ϕΦYυ as in Lemma 2. Then we see that K0LΦq,ϕ(Rn;Lp'((Rn)2))<, by Remark 4. Let B0 be a ball in Rn and satisfy sup K0B0×B0×B0. Then T0:L(p1,ϕ1)(Rn)×L(p2,ϕ2)(Rn)L(q,ϕ)(Rn) can be factorized as

T 0 : L ( p 1 , ϕ 1 ) ( R n ) × L ( p 2 , ϕ 2 ) ( R n ) T 1 L p ( R n ) T 2 L Φ q , ϕ ( R n ) T 3

L ( q , ϕ ) ( R n ) ,   w h e r e   T 1 :   f g χ B 0 ( y ) f ( y ) χ B 0 ( z ) g ( z ) , T 2 :   f g

T 0 ( f , g ) , T 3 :   f χ B 0 f ,   s o   T 0 ( f , g ) ( x ) = χ B 0 ( x ) ( R n ) 2 K 0 , ε ( x , y , z )

χ B 0 ( y ) f ( y ) χ B 0 ( z ) g ( z ) d y d z .

The operator T1 is clearly bounded and T2 is compact by Lemma 3. The operator T3 is also bounded by Lemma 2. Then T0=T3T2T1 is compact.

Lemma 4[12] Let ϕ satisfy the doubling condition (1) and (5), that is, rϕ(x,t)tdtCϕ(x,r).

Then there exist positive constants ε and Cε for all xRn and r(0,),such that

r ϕ ( x , t ) t ε t d t C ϕ ( x , r ) r ε .

Moreover, for all p(0,),there exists a positive constant Cp, for all xRn and r(0,),such that

r ϕ ( x , t ) 1 / p t d t C p ϕ ( x , r ) 1 / p .

Lemma 5[12] If ϕ is in ςdec and satisfies (5), then ϕ satisfies (4). Actually, ϕ satisfies the doubling condition and the following inequalities hold:

ϕ ( x , r ) r 2 r ϕ ( x , t ) t d t r ϕ ( x , t ) t d t ϕ ( x , r ) .

Then we see that limr+0ϕ(x,r)= and that limrϕ(x,r)=0.

Lemma 6[12] If ψ satisfies (13), then there exist constants θ(0,1) and C[1,), for bCcomp(Rn), and all x,yRn with |x-y|<1, such that

| b ( x ) - b ( y ) | C b L | x - y | θ ψ ( x , | x - y | ) .

2 Proof of Theorem 1

This section is devoted to the proof of Theorem 1.

We consider i=1 and it is enough to prove that [b,Iα]1 is compact for bCcomp(Rn), since bkb in ε(1,ψ)(Rn), as k+, then Lemma 1 shows that

[ b k , I α ] 1 - [ b , I α ] 1 L ( p 1 ,   ϕ 1 ) × L ( p 2 ,   ϕ 2 ) L ( q ,   ϕ ) b k - b ε ( 1 , ψ ) 0 ,

where L(p1, ϕ1)×L(p2, ϕ2)L(q, ϕ) is the operator norm from L(p1,ϕ1)(Rn)×L(p2,ϕ2)(Rn) to L(q,ϕ)(Rn).

For 0<ε<R<, we denote

I α , ε ( f , g ) ( x ) = ( | x - y | 2 + | x - z | 2 ) 1 / 2 > ε f ( y ) g ( z ) ( | x - y | + | x - z | ) 2 n - α d y d z ,

I α , ε , R ( f , g ) ( x ) = ε < ( | x - y | 2 + | x - z | 2 ) 1 / 2 < R f ( y ) g ( z ) ( | x - y | + | x - z | ) 2 n - α d y d z .

From Remark 3, it follows that

[ b , I α ] 1 ( f , g ) ( x ) = l i m ε + 0 [ b , I α , ε ] 1 ( f , g ) ( x ) ,

[ b , I α , ε ] 1 ( f , g ) ( x ) = l i m R [ b , I α , ε , R ] 1 ( f , g ) ( x ) , a . e . x R n ,

for all fL(p1,ϕ1)(Rn) and gL(p2,ϕ2)(Rn). If bCcomp(Rn), then

[ b , I α , ε , R ] 1 ( f , g ) ( x ) = ε < ( | x - y | 2 + | x - z | 2 ) 1 / 2 < R ( b ( x ) - b ( y ) ) f ( y ) g ( z ) ( | x - y | + | x - z | ) 2 n - α d y d z

is a compact operator from L(p1,ϕ1)(Rn)×L(p2,ϕ2)(Rn) to L(q,ϕ)(Rn) by Proposition 1 and Lemma 5. Therefore, it is enough to show the following proposition to prove Theorem 1.

Proposition 2   Under the assumption in Theorem 1, if bCcomp(Rn), then we have

( i ) l i m ε + 0 [ b , I α , ε ] 1 - [ b , I α ] 1 L ( p 1 ,   ϕ 1 ) × L ( p 2 ,   ϕ 2 ) L ( q ,   ϕ ) = 0 , ( i i ) l i m R [ b , I α , ε , R ] 1 - [ b , I α , ε ] 1 L ( p 1 ,   ϕ 1 ) × L ( p 2 ,   ϕ 2 ) L ( q ,   ϕ ) = 0 ,

where L(p1, ϕ1)×L(p2, ϕ2)L(q, ϕ) is the operator norm from L(p1,ϕ1)(Rn)×L(p2,ϕ2)(Rn) to L(q,ϕ)(Rn).

Proof of Proposition 2(i)   Let fL(p1,ϕ1)(Rn), g

L ( p 2 , ϕ 2 ) ( R n ) , and ε(0,1]. Then, from (14), it follows that [b,Iα]1(f,g)(x)-[b,Iα,ε]1(f,g)(x)=limη+0η<(|x-y|2+|x-z|2)12<ε(b(x)-b(y))f(y)g(z)(|x-y|+|x-z|)2n-αdydz.

By Lemma 5 and ψςinc,we obtain:

| [ b , I α ] 1 ( f , g ) ( x ) - [ b , I α , ε ] 1 ( f , g ) ( x ) | ( B ( x , ε ) ) 2 | b ( x ) - b ( y ) | | f ( y ) g ( z ) | ( | x - y | + | x - z | ) 2 n - α d y d z ( B ( x , ε ) ) 2 ψ ( x , | x - y | ) | f ( y ) g ( z ) | ( | x - y | + | x - z | ) 2 n - α d y d z = k = 0 ( B ( x , 2 - k ε ) ) 2 \ ( B ( x , 2 - k - 1 ε ) ) 2 ψ ( x , | x - y | ) | f ( y ) g ( z ) | ( | x - y | + | x - z | ) 2 n - α d y d z

k = 0 ψ ( x , 2 - k ε ) ( 2 - k - 1 ε ) ( B ( x , 2 - k ε ) ) 2 | f ( y ) g ( z ) | d y d z k = 0 ( 2 - k - 1 ε ) α + θ M ψ ( f , g ) ( x ) ε α + θ M ψ ( f , g ) ( x ) , a . e . x R n ,

for some θ(0,1]. Hence, by Theorem 2 and Lemma 6, we get [b,Iα]1(f,g)-[b,Iα,ε]1(f,g)L(q,ϕ )εα+θMψ(f,g)L(q,ϕ )

ε α + θ f L ( p 1 , ϕ 1   ) g L ( p 2 , ϕ 2   ) .

This proofs (i).

(ii) Let sup bB0=B(0,R0). Then

| [ b , I α ] 1 ( f , g ) ( x ) - [ b , I α , ε ] 1 ( f , g ) ( x ) |

( | x - y | 2 + | x - z | 2 ) 1 / 2 > R | b ( x ) - b ( y ) | | f ( y ) g ( z ) | ( | x - y | + | x - z | ) 2 n - α d y d z ( | x - y | 2 + | x - z | 2 ) 1 / 2 > R ( χ B 0 ( x ) + χ B 0 ( y ) ) ( | x - y | + | x - z | 1 t 2 n - α + 1 d t ) | f ( y ) g ( z ) | d y d z = 0 ( n ) 2 χ { R < ( | x - y | 2 + | x - z | 2 ) 1 / 2 < t } ( y , z , t )

( χ B 0 ( x ) + χ B 0 ( y ) ) | f ( y ) g ( z ) | t 2 n - α + 1 d y d z d t R ( ( B ( x , t ) ) 2 ( χ B 0 ( x ) + χ B 0 ( y ) ) | f ( y ) g ( z ) | d y d z ) 1 t 2 n - α + 1 d t .

Denote

E 1 ( x ) R ( ( B ( x , t ) ) 2 χ B 0 ( x ) | f ( y ) g ( z ) | d y d z ) 1 t 2 n - α + 1 d t ,

E 2 ( x ) R ( ( B ( x , t ) ) 2 χ B 0 ( y ) | f ( y ) g ( z ) | d y d z ) 1 t 2 n - α + 1 d t .

Then

| [ b , I α ] 1 ( f , g ) ( x ) - [ b , I α , ε ] 1 ( f , g ) ( x ) | E 1 ( x ) + E 2 ( x ) .

By Hölder's inequality, then

( B ( x , t ) ) 2 | f ( y ) g ( z ) | d y d z | B ( x , t ) | 2 ( 1 | B | B ( x , t ) | f ( y ) | p 1 d y ) 1 / p 1 ( 1 | B | B ( x , t ) | g ( z ) | p 2 d z ) 1 / p 2 ϕ ( x , t ) 1 / p t 2 n f L ( p 1 , ϕ 1 ) g L ( p 2 , ϕ 2 ) ,

Using (2) and (10), for large R, we have

E 1 ( x ) χ B 0 ( x ) ϕ ( 0 , R ) 1 / q f L ( p 1 , ϕ 1 ) g L ( p 2 , ϕ 2 ) .

Then E1L(q,ϕ)χB0L(q,ϕ)ϕ(0,R)1/p˜fL(p1,ϕ1)gL(p2,ϕ2).

Next, we estimate E2L(q,ϕ). By Hölder's inequality, we get

E 2 = R ( B ( x , t ) χ B 0 ( y ) | f ( y ) | d y ) ( B ( x , t ) | g ( z ) | d z ) 1 t 2 n + 1 d t R ( B ( x , t ) χ B 0 ( y ) | f ( y ) | d y ) ( ϕ 2 ( 0 , t ) 1 p 2 t n g L ( p 2 , ϕ 2 ) ) 1 t 2 n + 1 d t = R ( B ( x , t ) χ B 0 ( y ) | f ( y ) | d y ) ϕ 2 ( 0 , t ) 1 p 2 g L ( p 2 , ϕ 2 ) 1 t n + 1 d t .

If yB0B(x,t) and t is large, by Remark 4, then

χ B ( y , t ) L Φ q , ϕ = χ B ( y , t ) L Φ ϕ 1 / q 1 ϕ ( 0 , t ) 1 / q 1 t α ϕ ( 0 , t ) 1 / q ψ ( 0 , t ) .

By ϕ2ςdec and t>R, then ϕ2(x,t)ϕ2(B0). Hence

E 2 L ( q , ϕ ) R ( B ( x , t ) χ B ( , t ) ( y ) L ( q , ϕ ) χ B 0 ( y ) | f ( y ) | d y ) ( ϕ 2 ( 0 , t ) 1 / p 2 g L ( p 2 , ϕ 2 ) ) d t t n - α + 1 R s u p y B 0 χ B ( y , t ) L ( q , ϕ ) ( ϕ 1 ( B 0 ) 1 / p 1 | B 0 | f L ( p 1 , ϕ 1 ) ) ( ϕ 2 ( 0 , t ) 1 / p 2 g L ( p 2 , ϕ 2 ) ) d t t n - α + 1

R s u p y B 0 χ B ( y , t ) L Φ q , ϕ d t t n - α + 1 f L ( p 1 , ϕ 1 ) g L ( p 2 , ϕ 2 ) ϕ ( B 0 ) 1 / p | B 0 | R 1 ϕ ( 0 , t ) 1 / p ψ ( 0 , t ) t n + 1 d t ϕ ( B 0 ) 1 / p | B 0 | f L ( p 1 , ϕ 1 ) g L ( p 2 , ϕ 2 ) .

By the almost increasing of rϕ(0,r)rn, and ψςinc,we obtain

R 1 ϕ ( 0 , t ) 1 / p ψ ( 0 , t ) t n + 1 d t 1 ( ϕ ( 0 , R ) R n ) 1 / p ψ ( 0 , R ) R 1 t n - n / p + 1 d t 1 ( ϕ ( 0 , R ) R n ) 1 / p ψ ( 0 , R ) R n - n / p ,

which implies

[ b , I α ] 1 ( f , g ) - [ b , I α , ε , R ] 1 ( f , g ) L ( q , ϕ ) ( χ B 0 L ( q , ϕ ) ϕ ( 0 , R ) 1 / p ˜ + | B 0 | ( ϕ ( B 0 ) ) 1 / p ( ϕ ( 0 , R ) R n ) 1 / p ψ ( 0 , R ) R n - n / p ) f L ( p 1 , ϕ 1 ) g L ( p 2 , ϕ 2 ) .

By (4) and the almost increasing of rϕ(0,r)rn,this means that ϕ(0,R)0, and 1(ϕ(0,R)Rn)1/pψ(0,R)Rn-n/p0 as R, we have (ii).

3 The Boundedness and Compactness of the Commutators of Multilinear Fractional Integrals

All the results obtained in Lemma 1 and Theorem 1 also hold for m-linear (m2) operators. In fact, the proof of these results is similar to Theorem 1. We have the following results.

Let m2,0<α<mn. The m-linear fractional integral operator Iα,m is defined by

I α , m ( f ) ( x ) = ( R n ) m i = 1 m f i ( y i ) ( i = 1 m | x - y i | ) m n - α d y . (18)

where xRn,dy=dy1dym, and f=(f1,,fm), fi, i=1, 2, , m, are locally integrable functions.

The boundedness of the m-linear fractional integral operator Iα,m, is bounded from L(p1,ϕ1)(Rn)××L(pm,ϕm)(Rn) to L(p˜,ϕ)(Rn),the proof of these results is similar to Lemma 4.1 of Ref. [13].

Let bjLloc1,j=1,,m, we define the commutators Iα,mb of m-linear fractional integral operator as follows:

I α , m b ( f ) ( x ) = i = 1 m I α , m b i , i ( f ) ( x ) = i = 1 m ( R n ) m ( b i ( x ) - b i ( y i ) ) i = 1 m f i ( y i ) ( i = 1 m | x - y i | ) m n - α d y ,

where

I α , m b i , i ( f ) ( x ) = : b i ( x ) I α , m ( f 1 , , f i , , f m ) ( x ) - Ι α , m ( f 1 , , b i f i , , f m ) ( x ) .

The boundedness of the commutators of m-linear fractional integral operator Iα,mb, our main result, is the following.

Theorem 3   Let p,pi,q(1,),i=1,,m,p<q, such that i=1m1pi=1p=1q+αn,α (0,mn), and ϕ,ϕi,ψ:Rn×

( 0 , ) ( 0 , ) , i = 1 , , m , for all xRn and r(0,), satisfies:

i = 1 m ϕ i 1 / p i = ϕ 1 / p , (19)

(i) Assume that ϕ,ϕiςdec and ψςinc, ψ satisfies (2), ϕ,ϕi satisfy (5) and there exist positive constants C0,C1 and an exponent p˜(p,q], for all xRn and r(0,), such that

0 r t α - 1 d t ϕ ( x , r ) 1 / p + r t α - 1 ϕ ( x , t ) 1 / p d t C 0 ϕ ( x , r ) 1 / p ˜ , (20)

ψ ( x , r ) ϕ ( x , r ) 1 / p ˜ C 1 ϕ ( x , r ) 1 / q (21)

If bjε(1,ψ)(Rn), then Iα,mb is well defined for all fiL(pi,ϕi)(Rn). That is, for all fiL(pi,ϕi)(Rn), i,j=1,,m,such that

I α , m b ( f ) L ( q , ϕ ) b ( ε ( 1 , ψ ) ) m i = 1 m f i L ( p i , ϕ i ) , (22)

where b(ε(1,ψ))m:=supj=1,,mbjε(1,ψ).

(ii) Conversely, assume that ϕ,ϕi,i=1,,m satisfy (2), and that there exists a positive constant C2, for all xRn and r(0,), such that

C 2 ψ ( x , r ) r α ϕ ( x , r ) 1 / p ϕ ( x , r ) 1 / q . (23)

If Iα,mb is bounded from L(p1,ϕ1)(Rn)××L(pm,ϕm)(Rn) to L(q,ϕ)(Rn), then bjε(1,ψ)(Rn), j=1,,m, such that

b j ε ( 1 , ψ ) I α , m b L ( p 1 , ϕ 1 ) × × L ( p m , ϕ m ) L ( q , ϕ ) .

The compactness of the commutators of the m-linear fractional integral operator Iα,mb, our main result, is the following.

Theorem 4   Let p, pi(1, ), i=1, , m, p < q, i=1m1pi=1p=1q+αn,α(0,mn), and ϕ,ϕi:Rn×(0,)(0,),

i = 1 , , m . Assume the same condition as Lemma 1. Assume also that ϕ,ϕi and ψ satisfy (2) and (13), respectively. If bjCcomp(Rn)¯ε(1, ψ)(Rn),j=1,,m, then Iα,mb are compact from L(p1,ϕ1)(Rn)××L(pm,ϕm)(Rn) to L(q,ϕ)(Rn).

References

  1. Riesz M. Lintégrale de Riemann-Liouville et le problème de cauchy[J]. Acta Mathematica, 1949, 81(1): 1-222. [Google Scholar]
  2. Uchiyama A. On the compactness of operators of Hankel type[J]. Tohoku Mathematical Journal, 1978, 30(1): 163-171. [Google Scholar]
  3. Chen X, Xue Q Y. Weighted estimates for a class of multilinear fractional type operators[J]. Journal of Mathematical Analysis and Applications, 2010, 362(2): 355-373. [Google Scholar]
  4. Chen S Q, Wu H X. Multiple weighted estimates for commutators of multilinear fractional integral operators[J]. Sci China Math, 2013, 56(9): 1879-1894. [Google Scholar]
  5. Bényi Á, Torres R. Compact bilinear operators and commutators[J]. Proceedings of the American Mathematical Society, 2013, 141(10): 3609-3621. [Google Scholar]
  6. Ding Y, Mei T. Boundedness and compactness for the commutators of bilinear operators on Morrey spaces[J]. Potential Analysis, 2015, 42(3): 717-748. [Google Scholar]
  7. Chen Y P, Ding Y, Wang X X. Compactness of commutators of Riesz potential on Morrey spaces[J]. Potential Analysis, 2009, 30(4): 301-313. [Google Scholar]
  8. Tao J, Xue Q Y, Yang D C, et al. XMO and weighted compact bilinear commutators[J]. Journal of Fourier Analysis and Applications, 2021, 27(3): 1-42. [Google Scholar]
  9. Torres R H, Xue Q Y, Yan J Q. Compact bilinear commutators: The quasi-Banach space case[J]. The Journal of Analysis, 2018, 26(2): 227-234. [Google Scholar]
  10. Wang S F, Xue Q Y. On weighted compactness of commutators of bilinear maximal Calderón-Zygmund singular integral operators[J]. Forum Mathematicum, 2022, 34(2): 307-322. [Google Scholar]
  11. Arai R, Nakai E. Commutators of Calderón-Zygmund and generalized fractional integral operators on generalized Morrey spaces[J]. Rev Mat Complut, 2018, 31(2): 287-331. [Google Scholar]
  12. Arai R, Nakai E. Compact commutators of Calderón-Zygmund and generalized fractional integral operators with a function in generalized Campanato spaces on generalized Morrey spaces[J]. Tokyo J Math, 2019, 42(2): 471-496. [Google Scholar]
  13. Chen S Q, Ku F L, Wu H X. Boundedness for the commutators of bilinear fractional integral operators on generalized Morrey spaces[J]. Sci China Math, 2023, 53(7): 973-992. [Google Scholar]
  14. Bényi Á, Damián W, Moen K, et al. Compactness properties of commutators of bilinear fractional integrals[J]. Mathematische Zeitschrift, 2015, 280(1): 569-582. [Google Scholar]
  15. Rao M M, Ren Z D. Theory of Orlicz Spaces[M]. New York: Marcel Dekker, 1991. [Google Scholar]
  16. Ku F L. Boundedness of commutators for multilinear Marcinkiewicz integrals with generalized Campanato functions on generalized Morrey spaces[J]. Journal of Mathematical Study, 2023, 56(4): 411-437. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.