Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 1, March 2022
|
|
---|---|---|
Page(s) | 53 - 56 | |
DOI | https://doi.org/10.1051/wujns/2022271053 | |
Published online | 16 March 2022 |
- Rogers L C G. Arbitrage with fractional Brownian motion[J]. Mathematical Finance, 1997, 7(1): 95-105. [CrossRef] [MathSciNet] [Google Scholar]
- Duncan T E, Hu Y, Pasik-Duncan B. Stochastic calculus for fractional Brownian motion I. theory[J]. SIAM Journal on Control and Optimization, 2000, 38(2): 582-612. [CrossRef] [MathSciNet] [Google Scholar]
- Hu Y Z, Ksendal B. Fractional white noise calculus and applications to finance [J]. Infinite Dimensional Analysis Quantum Probability and Related Topics, 2003, 6(1):1-32. [MathSciNet] [Google Scholar]
- Elliott R J, Hoek J V D. A general fractional white noise theory and applications to finance[J]. Mathematical Finance, 2010, 13(2): 301-330. [Google Scholar]
- Weber T A. Optimal Control Theory with Applications in Economics || Introduction [EB/OL]. [2021-05-12]. http://www.onacademic.com/detail/journal_1000047928876999_36c6.html, DOI:10.7551/mitpress/9780262015738.001.0001. [Google Scholar]
- Wallner N, Oksendal B, Sulem A, et al. An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion [J]. Proceedings of the Royal Society: Mathematical, Physical and Engineering Sciences, 2004, 460(2041): 347-372. [Google Scholar]
- Puhle M. Bond Portfolio Optimization [M]. Berlin: Springer- Verlag, 2008. [Google Scholar]
- Ksendal B. Stochastic Differential Equations [M]. Berlin: Springer-Verlag , 1998. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.