Open Access
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 2, April 2022
Page(s) 135 - 141
Published online 20 May 2022
  1. Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64(8): 821-824. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. Lu J A, Wu X Q, Lü J H. Synchronization of a unified chaotic system and the application in secure communication [J]. Physics Letters A, 2002, 305(6): 365-370. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  3. Li D K . Application for function projection synchronization of the hyper-chaotic system in image encryption [J]. Journal of Beijing University of Technology, 2019, 45(1): 24-32(Ch). [MathSciNet] [Google Scholar]
  4. Sugawara T, Tachikawa M, Tsukamoto T, et al. Observation of synchronization in laser chaos [J]. Physics Letters A, 2002, 72(22): 3502-3505. [Google Scholar]
  5. Chen J H, Chen H K, Lin Y K. Synchronization and anti- synchronization coexist in Chen-Lee chaotic systems [J]. Chaos, Solitons & Fractals, 2009, 39(2): 707-716. [Google Scholar]
  6. Guan S G, Lai C H, Wei G W. Phase synchronization between two essentially different chaotic systems [J]. Physical Review E, 2005, 72(1): 016205-1-8 . [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. Wu X J, Lu H T. Projective lag synchronization of the general complex dynamical networks with distinct nodes [J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(11): 4417-4429. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  8. Du H Y, Zeng Q S, Wang C H, et al. Function projective synchronization in coupled chaotic systems [J]. Nonlinear Analysis: Real World Applications, 2010, 11(2): 705-712. [Google Scholar]
  9. Li D K, Lian Y P, Zhang J G. Function projective synchronization of complex networks with time-varying delay coupling [J]. Journal of Beijing University of Technology, 2015, 41(2): 207-214(Ch). [MathSciNet] [Google Scholar]
  10. Cai N, Li W Q, Jing Y W. Finite-time generalized synchronization of chaotic systems with different order [J]. Nonlinear Dynamics, 2011, 64(4): 385-393. [CrossRef] [MathSciNet] [Google Scholar]
  11. Alvarez G, Hernández L, Muñoz J, et al. Security analysis of communication system based on the synchronization of different order chaotic systems [J]. Physics Letters A, 2005, 345 (4-6): 245-250. [NASA ADS] [CrossRef] [Google Scholar]
  12. Bowong S . Stability analysis for the synchronization of chaotic systems with different order: Application to secure communications [J]. Physics Letter A, 2004, 326(1-2): 102-113. [NASA ADS] [CrossRef] [Google Scholar]
  13. Vincent U E, Guo R W. A simple adaptive control for full and reduced-order synchronization of uncertain time-varying chaotic systems [J]. Communications in Nonlinear Science Numerical Simulation, 2009, 14(11): 3925-3932. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. Ge Z M, Yang C H. The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems [J]. Chaos, Solitons & Fractals, 2008, 35(5): 980-990. [Google Scholar]
  15. Zhang D, Mei J, Miao P. Global finite-time synchronization of different dimensional chaotic systems [J]. Applied Mathematical Modelling, 2017, 48: 303-315. [CrossRef] [MathSciNet] [Google Scholar]
  16. Wang H, Han Z Z, Xie Q Y, et al. Finite-time chaos synchronization of unified chaotic system with uncertain parameters [J]. Communications in Nonlinear Science Numerical Simulation, 2009, 14(5): 2239-2247. [NASA ADS] [CrossRef] [Google Scholar]
  17. Ahmad I, Shafiq M, Saaban A B, et al. Robust finite-time global synchronization of chaotic systems with different orders [J]. Optik-International Journal for Light and Electron Optics, 2016, 127(19): 8172-8185. [NASA ADS] [CrossRef] [Google Scholar]
  18. Huang X Q, Lin W, Yang B. Global finite-time stabilization of a class of uncertain nonlinear systems [J]. Automatic, 2005, 41(5): 881-888. [CrossRef] [MathSciNet] [Google Scholar]
  19. Feng Y, Sun L X, Yu X H. Finite time synchronization of chaotic systems with unmatched uncertainties [C]// The 30th Annual Conference of the IEEE Industrial Electronics Society. Busan: IEEE, 2004: 8597480. [Google Scholar]
  20. Li D K . Hopf bifurcation and circuit implementation of a new hyper-chaotic Lorenz system [J]. Journal of Ningxia University, 2016, 37(3): 294-310(Ch). [Google Scholar]
  21. Chen G R, Lü J H. Dynamics Analysis, Control and Synchronization of Lorenz System Family [M]. Beijing: Science Press, 2003(Ch). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.