Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 3, June 2022
Page(s) 240 - 254
DOI https://doi.org/10.1051/wujns/2022273240
Published online 24 August 2022
  1. Fernández S, Ito T. Semantic integration of sensor data with SSN ontology in a multi-agent architecture for intelligent transportation systems[J]. IEICE Trans Inf Syst, 2017,12: 2915-2922. [CrossRef] [Google Scholar]
  2. Zangeneh P, McCabe B. Ontology-based knowledge representation for industrial megaprojects analytics using linked data and the semantic web[J]. Adv Eng Informatics, 2020, 46:101164. [CrossRef] [Google Scholar]
  3. Talhi A, Fortineau V, Huet J C, et al. Ontology for cloud manufacturing based product lifecycle management[J]. J Intell Manuf, 2019, 30(5) : 2171-2192. [CrossRef] [Google Scholar]
  4. Azevedo H, Belo J P R, Romero R A F. Using ontology as a strategy for modeling the interface between the cognitive and robotic systems[J]. J Intell Robotic Syst, 2020, 99(3):431-449. [CrossRef] [Google Scholar]
  5. Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: Theory and application[J]. Advances in Engineering Software, 2017, 105: 30-47. [CrossRef] [Google Scholar]
  6. Bock J, Hettenhausen J. Discrete particle swarm optimisation for ontology alignment[J]. Inf Sci, 2012, 192: 152-173. [CrossRef] [Google Scholar]
  7. Wang J L, Ding Z J, Jing C J. GAOM: Genetic algorithm based ontology alignment[C]// Asia-Pacific Services Computing Conference (APSCC) . Washington D C: IEEE, 2006: 617-620. [Google Scholar]
  8. Mohammadi M, Hofman W, Tan Y H. Simulated annealing-based ontology alignment[J]. ACM Trans Manag Inf Syst, 2019, 10(1): 3:1-3:24. [Google Scholar]
  9. Gil J M, Montes J F A. Evaluation of two heuristic approaches to solve the ontology meta-matching problem[J]. Knowl Inf Syst, 2011, 26(2): 225-247. [CrossRef] [Google Scholar]
  10. Gil J M, Alba E, Montes J F A. Optimizing ontology alignments by using genetic algorithms [C]// 7th International Semantic Web Conference (ISWC). Berlin Heidelberg: Springer-Verlag, 2008: 1-15. [Google Scholar]
  11. Naya J M V, Romero M M, Loureiro J P, et al. Improving ontology alignment through genetic algorithms[C]// Soft Computing Methods for Practical Environment Solutions: Techniques and Studies. Hershey: IGI Global, 2010: 240-259. [Google Scholar]
  12. Ginsca A L, Iftene A. Using a genetic algorithm for optimizing the similarity aggregation step in the process of ontology alignment[C]// 9th Roedunet International Conference (RoEduNet). Washington D C: IEEE, 2010: 118-122. [Google Scholar]
  13. Xue X S, Wang Y P. Improving the efficiency of NSGA-II based ontology aligning technology[J]. Data Knowl Eng, 2017, 108: 1-14. [CrossRef] [Google Scholar]
  14. Xue X S, Wang Y P, Hao W C. Using MOEA/D for optimizing ontology alignments[J]. Soft Comput, 2014,18(8):1589-1601. [CrossRef] [Google Scholar]
  15. Acampora G, Loia V, Vitiello A. Enhancing ontology alignment through a memetic aggregation of similarity measures[J]. Inf Sci, 2013, 250: 1-20. [CrossRef] [Google Scholar]
  16. Acampora G, Kaymak U, Loia V, et al. Applying NSGA-II for solving the ontology alignment problem[C]// International Conference on Systems, Man, and Cybernetics(SMC). Washington D C: IEEE , 2013: 1098-1103. [Google Scholar]
  17. Ryma G, Kholladi M K. Genetic algorithm with hill climbing for correspondences discovery in ontology mapping[J]. J Inf Technol Res, 2019, 12(4):153-170. [CrossRef] [Google Scholar]
  18. Forsati R, Shamsfard M. Symbiosis of evolutionary and combinatorial ontology mapping approaches[J]. Inf Sci, 2016, 342: 53-80. [CrossRef] [Google Scholar]
  19. Lv Z M, Peng R. A novel meta-matching approach for ontology alignment using grasshopper optimization[J]. Knowl Based Syst, 2020: 201-202. Article ID: 106050. [Google Scholar]
  20. Xue X S, Wang Y P, Ren A H. Optimizing ontology alignment through memetic algorithm based on partial reference alignment[J]. Expert Syst Appl, 2014, 41(7): 3213-3222. [CrossRef] [Google Scholar]
  21. Xue X S, Wang Y P. Optimizing ontology alignments through a memetic algorithm using both MatchFmeasure and unanimous improvement ratio[J]. Artif Intell, 2015, 223:65-81. [CrossRef] [Google Scholar]
  22. Xue X S, Wang Y P. Using compact evolutionary Tabu Search algorithm for matching sensor ontologies[J]. Swarm Evol Comput, 2019, 48: 25-30. [CrossRef] [Google Scholar]
  23. Xue X S, Wang Y P. Using memetic algorithm for instance coreference resolution[J]. IEEE Trans Knowl Data Eng, 2016, 28(2): 580-591. [CrossRef] [Google Scholar]
  24. Euzenat J, Shvaiko P. Ontology Matching[M]. Berlin Heidelberg: Springer-Verlag, 2013. [CrossRef] [Google Scholar]
  25. Das A K, Nikum A K, Krishnan S V, et al. Multi-objective Bonobo Optimizer (MOBO): An intelligent heuristic for multi-criteria optimization[J]. Knowl Inf Syst, 2020, 62(11):4407-4444. [CrossRef] [Google Scholar]
  26. Mirjalili S Z, Mirjalili S, Saremi S, et al. Grasshopper optimization algorithm for multi-objective optimization problems[J]. Appl Intell, 2018, 48 (4): 805-820. [CrossRef] [Google Scholar]
  27. Deb K, Mohan M, Mishra S. Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions[J]. Evol Comput, 2005,13(4): 501-525. [CrossRef] [PubMed] [Google Scholar]
  28. Deb K, Agrawal S, Pratap A. et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans Evol Comput, 2002, 6(2): 182-197. [CrossRef] [Google Scholar]
  29. Yates R A B, Neto B A R. Modern Information Retrieval[M]. New York: ACM Press / Addison-Wesley ,1999. [Google Scholar]
  30. Cohen W W, Ravikumar P, Fienberg S E. A comparison of string distance metrics for name-matching tasks [C]// Proc of the KDD Workshop on Data Cleaning and Object Consolidation. Washington D C: IEEE, 2003, 3: 73-78. [Google Scholar]
  31. Salton G, Wong A, Yang C S. A vector space model for automatic indexing[J]. Commun ACM, 1975, 18(11): 613-620. [CrossRef] [Google Scholar]
  32. Miller G A. WordNet: A lexical database for English[J].Communications of the ACM, 1995, 38(11): 39-41. [CrossRef] [Google Scholar]
  33. Scherbina A, Kuznetsov S. Clustering of Web sessions using Levenstein metric[J]// Industrial Conference on Data Mining . Berlin: Springer-Verlag, 2004: 127-133. [Google Scholar]
  34. Saxena N, Mishra K K. Improved multi-objective particle swarm optimization algorithm for optimizing watermark strength in color image watermarking[J]. Appl Intell, 2017, 47(2): 362-381. [CrossRef] [Google Scholar]
  35. Faria D, Pesquita C, Balasubramani B S, et al. OAEI 2016 results for AML[C]// Proceedings of the 11th International Workshop on Ontology Matching. Berlin: Springer-Verlag, 2016: 154-160. [Google Scholar]
  36. Ruiz E J, Grau B C, Cross V V. LogMap family participation in the OAEI 2016[C]// Proceedings of the 11th International Workshop on Ontology Matching. Berlin: Springer-Verlag, 2016: 201-203. [Google Scholar]
  37. Djeddi W E, Khadir M T, Yahia S B. XMap: results for OAEI 2016[C]// Proceedings of the 11th International Workshop on Ontology Matching, Berlin: Springer-Verlag, 2016: 222-226. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.