Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 3, June 2022
Page(s) 261 - 264
DOI https://doi.org/10.1051/wujns/2022273261
Published online 24 August 2022
  1. Elwy O, Said L A, Madian A H, et al. All possible topologies of the fractional-order Wien oscillator family using different approximation techniques [J]. Circuits, Systems, and Signal Processing, 2019, 38(9): 3931-3951. [CrossRef] [Google Scholar]
  2. Budak A. Passive and Active Network Analysis and Synthesis [M]. Long Grove: Waveland Press Inc, 1991. [Google Scholar]
  3. Soliman A M. Generation of CCII and ICCII based Wien oscillators using nodal admittance matrix expansion [J]. AEU-International Journal of Electronics and Communications, 2010, 64(10): 971-977. [Google Scholar]
  4. Li Y A. Synthesis of compact VDTA-based Wien oscillators with grounded capacitors [J]. AEU-International Journal of Electronics and Communications, 2018, 84: 281-289. [Google Scholar]
  5. Fabre A, Saaid O, Wiest F, et al. High frequency applications based on a new current controlled conveyor [J]. IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, 1996, 43(2): 82-91. [CrossRef] [Google Scholar]
  6. Kiranon W, Kesorn J, Wardkein P. Current controlled oscillator based on translinear conveyors [J]. Electronics Letters, 1996, 32(15): 1330-1331. [NASA ADS] [CrossRef] [Google Scholar]
  7. Kiranon W, Kesorn J, Sangpisit W, et al. Electronically tunable multi-functional translinear-C filter and oscillator [J]. Electronics Letters, 1997, 33(7): 573-574. [NASA ADS] [CrossRef] [Google Scholar]
  8. Li Y A. RC oscillators based on high-Q frequency-selecting network [J]. IET Circuits, Devices & Systems, 2018, 12(1): 82-87. [CrossRef] [Google Scholar]
  9. Appala-Naidu G, Mounika S, Krishna B T. Implementation of RC oscillator with high-Q frequency selection using CCCII [J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 8(4): 4470-4477. [CrossRef] [Google Scholar]
  10. Li Y A. Synthesis for current-mode sallen-key filter using VDTAs [J]. Wuhan University Journal of Natural Sciences, 2020, 25(5): 428-434. [Google Scholar]
  11. Li Y A, Hou J Q. Pathological models of EXCCCII and its applications in oscillator synthesis [J]. Wuhan University Journal of Natural Sciences, 2021, 26(1): 115-122. [Google Scholar]
  12. Li Y A, Chen B. Systematic synthesis for multiple-feedback filter using OTAs and CCCIIs [J]. Wuhan University Journal of Natural Sciences, 2020, 25(1): 71-77. [Google Scholar]
  13. Li Y A, Chen B. Systematic synthesis for electronic-control colpitts oscillator using CCCIIs [J]. Wuhan University Journal of Natural Sciences, 2019, 24(3): 251-256. [CrossRef] [Google Scholar]
  14. Agrawal D, Maheshwari S. High-performance electronically tunable analog filter using a single EX-CCCII [J]. Circuits, Systems, and Signal Processing, 2021, 40(3): 1127-1151. [CrossRef] [Google Scholar]
  15. Siripruchyanun M, Jaikla W. Current controlled current conveyor transconductance amplifier (CCCCTA): A building block for analog signal processing [J]. Electrical Engineering, 2008, 90(6): 443-453. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.