Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 3, June 2022
Page(s) 265 - 272
DOI https://doi.org/10.1051/wujns/2022273265
Published online 24 August 2022
  1. Nestler E J, Luscher C. The molecular basis of drug addiction: Linking epigenetic to synaptic and circuit mechanisms [J]. Neuron, 2019, 102(1): 48-59. [CrossRef] [PubMed] [Google Scholar]
  2. Li P, Wang X Q, Sun Z W, et al. Advances in the study of drug addiction memory and its neural circuits [J]. Journal of Biology, 2018, 35(1): 93-96, 100(Ch). [Google Scholar]
  3. Peters J, Kalivas P W, Quirk G J. Extinction circuits for fear and addiction overlap in prefrontal cortex [J]. Learning & Memory, 2009, 16(5): 279-288. [CrossRef] [PubMed] [Google Scholar]
  4. Famitafreshi H, Karimian M. Socialization alleviates burden of oxidative-stress in hippocampus and prefrontal cortex in morphine addiction period in male rats [J]. Current Molecular Pharmacology, 2018, 11(3): 254-259. [CrossRef] [PubMed] [Google Scholar]
  5. Liu P, Chu Z, Lei G, et al. The role of HINT1 protein in morphine addiction: An animal model-based study [J]. Addiction Biology, 2020, 26(2): e12897. [PubMed] [Google Scholar]
  6. Wang N, Ge F F, Cui C L, et al. Role of glutamatergic projections from the ventral CA1 to infralimbic cortex in context-induced reinstatement of heroin seeking [J]. Neuropsychopharmacology, 2018, 43(6): 1373-1384. [CrossRef] [PubMed] [Google Scholar]
  7. He X, Wang X, Wang G. Effects of naloxone on the hippocampal electroencephalographic power spectrum in morphine-addicted rats [J]. Chinese Journal of Behavioral Medicine and Brain Science, 2015, 24(10): 869-872(Ch). [Google Scholar]
  8. Tian S W, Deng H F, Yang Y F. Differential effects of morphine on gamma oscillatory activity in prefrontal cortex and hippocampus of rats [J]. Medical Science Journal Central South China, 2011, 39(1): 45-48(Ch). [Google Scholar]
  9. Liu F, Jiang H, Zhong W, et al. Changes in ensemble activity of hippocampus CA1 neurons induced by chronic morphine administration in freely behaving mice [J]. Neuroscience, 2010, 171(3): 747-759. [CrossRef] [PubMed] [Google Scholar]
  10. Fanselow M S, Dong H W. Are the dorsal and ventral hippocampus functionally distinct structures? [J]. Neuron, 2010, 65(1): 7-19. [CrossRef] [PubMed] [Google Scholar]
  11. Li P. Roles of Hippocampal-Prefrontal Cortical Circuits in Morphine Addiction Memory and Effects of Ethanol Extract of Bidens pilosa in Neural Behaviors [D]. Kunming: Yunnan Normal University, 2017(Ch). [Google Scholar]
  12. Paxinos G, Franklin K B J. The Mouse Brain in Stereotaxic Coordinates [M]. 2nd Edition. Sydney: Academic Press, 2001. [Google Scholar]
  13. Tzschentke T M. Review on CPP: Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade [J]. Addiction Biology, 2007, 12(3/4): 227-462. [CrossRef] [PubMed] [Google Scholar]
  14. Lu G Y, Wu N, Li J. Effect of different extinction methods on morphine-induced conditioned place preference in mouse [J]. Journal of International Pharmaceutical Research, 2014, 41(4): 473-477(Ch). [Google Scholar]
  15. Zhao S Y, Bin J, Shao X X, et al. The changes of dopamine in hippocampal CA1 in CPP activition model induced by morphine in rats [J]. Journal of Kunming Medical University, 2009, 30(5): 29-32(Ch). [Google Scholar]
  16. Shao X X, Zhao Y N, Li S Q, et al. Ultrastructural changes in hippocampal CAl during morphine induced conditioned place preference establishment and extinction in rats [J]. Journal of Kunming Medical University, 2011, 32(6): 22-26(Ch). [Google Scholar]
  17. Cui Y, Li L, Guo P J, et al. Research of acquisition and extinction of conditioned place preference in morphine-induced rats [J]. Chinese Journal Modern Drug Application, 2015, 9(17): 276-277(Ch). [Google Scholar]
  18. Yu R. Wireless Telemetry Electrical Activity on Nucleus Accumbens Shell in Morphine-Induced CPP and Morphine-Induced Extinction Rats [D]. Wuhu: Wannan Medical College, 2015(Ch). [Google Scholar]
  19. Li J, Pan Q W, Zhu Z M, et al. Telemetering changes of brain electrical activity in morphine dependent rats during drug-seeking retreat stage [J]. Journal of Southern Medical University, 2015, 35(5): 733-737(Ch). [Google Scholar]
  20. Kota S, Rugg M D, Lega B C. Hippocampal theta oscillations support successful associative memory formation [J]. The Journal of Neuroscience, 2020, 40(49): 9507-9518. [CrossRef] [PubMed] [Google Scholar]
  21. Lega B, Burke J, Jacobs J, et al. Slow-theta-to-gamma phase-amplitude coupling in human hippocampus supports the formation of new episodic memories [J]. Cerebral Cortex, 2014, 26(1): 268-278. [Google Scholar]
  22. Fisher M L, LeMalefant R M, Zhou L Y, et al. Distinct roles of CREB within the ventral and dorsal hippocampus in mediating nicotine withdrawal phenotypes [J]. Neuropsychopharmacology, 2017, 42(8): 1599-1609. [CrossRef] [PubMed] [Google Scholar]
  23. Zhou Y M, Yan E H, Cheng D Q, et al. The projection from ventral CA1, not prefrontal cortex, to nucleus accumbens core mediates recent memory retrieval of cocaine-conditioned place preference [J]. Frontiers in Behavioral Neuroscience, 2020, 14: 558074. [CrossRef] [PubMed] [Google Scholar]
  24. Wang Y P, Zhang H Y, Cui J J, et al. Opiate-associated contextual memory formation and retrieval are differentially modulated by dopamine D1 and D2 signaling in hippocampal-prefrontal connectivity [J]. Neuropsychopharmacology, 2019, 44(2): 334-343. [CrossRef] [PubMed] [Google Scholar]
  25. Chimbar L, Moleta Y. Naloxone effectiveness: A systematic review [J]. Journal of Addictions Nursing, 2018, 29(3): 167-171. [CrossRef] [PubMed] [Google Scholar]
  26. Grasing K, Szeto H. Naloxone causes a dose-dependent increase in total power and delta wave activity in the EEG of opioid-naive rats [J]. The Journal of Pharmacology and Experimental Therapeutics, 1991, 259(1): 464-469. [PubMed] [Google Scholar]
  27. Malboosi N, Nasehi M, Hashemi M, et al. The neuroprotective effect of NeuroAid on morphine-induced amnesia with respect to the expression of TFAM, PGC-1α, ΔfosB and CART genes in the hippocampus of male Wistar rats [J]. Gene, 2020, 742: 144601. [CrossRef] [PubMed] [Google Scholar]
  28. Jafarinejad-Farsangi S, Farazmand A, Rezayof A, et al. Proteome analysis of rat hippocampus following morphine-induced amnesia and state-dependent learning [J]. Iranian Journal of Pharmaceutical Research, 2015, 14(2): 591-602. [PubMed] [Google Scholar]
  29. Mattei V, Martellucci S, Santilli F, et al. Morphine withdrawal modifies prion protein expression in rat hippocampus [J]. PLoS One, 2017, 12(1): e0169571. [Google Scholar]
  30. Heidari M H, Amini A, Bahrami Z, et al. Effect of chronic morphine consumption on synaptic plasticity of rat's hippocampus: A transmission electron microscopy study [J]. Neurology Research International, 2013, 2013: 290414. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.