Open Access
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 4, August 2022
Page(s) 313 - 320
Published online 26 September 2022
  1. Animasaun I L, Shah N A, Wakif A, et al. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-analysis, and Scrutinization[M]. New York: Chapman and Hall/CRC, 2022. [Google Scholar]
  2. Cao W H, Animasaun I L, Yook S J, et al. Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: Ternary-hybrid nanofluid[J]. Inter J Commun Heat Mass, 2022, 135: 106069. [CrossRef] [Google Scholar]
  3. Xia W F, Animasaun I L, Wakif A, et al. Gear-generalized differential quadrature analysis of oscillatory convective Taylor-Couette flows of second-grade fluids subject to Lorentz and Darcy-Forchheimer quadratic drag forces[J]. Inter J Commun Heat Mass, 2021, 126: 105395. [CrossRef] [Google Scholar]
  4. Chowdhury M S H, Hashim I. Application of homotopy-perturbation method to Klein-Gordon and sine-Gordon equations[J]. Chaos Soliton Fract, 2009, 39: 1928-1935. [CrossRef] [Google Scholar]
  5. Wazwaz M A. New travelling wave solutions to the Boussinesq and the Klein-Gordon equations[J]. Commun Nonlinear Sci Numer Simul, 2008, 13: 889-901. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  6. Zheng H, Zhang C Z, Wang Y S, et al. A local RBF collocation method for band structure computations of 2D solid/fluid and fluid/solid phononic crystals[J]. Int J Numer Meth Eng, 2017, 110 (5): 467-500. [NASA ADS] [CrossRef] [Google Scholar]
  7. Wang L H, Qian Z H. A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation[J]. Comput Method Appl M, 2020, 371:113303. [NASA ADS] [CrossRef] [Google Scholar]
  8. Gu Y, Fan C M, Xu R P. Localized method of fundamental solutions for large-scale modelling of two-dimensional elasticity problems[J]. Appl Math Lett, 2019, 93: 8-14. [CrossRef] [MathSciNet] [Google Scholar]
  9. Lin J, Chen F, Zhang L J. An accurate meshless collocation technique for solving two-dimensional hyperbolic telegraph equations in arbitrary domains[J]. Eng Anal Bound Elem, 2019, 108: 372-384. [CrossRef] [MathSciNet] [Google Scholar]
  10. Lee I J. Numerical solution for nonlinear Klein-Gordon equation by collocation method with respect to spectral method[J]. J Korean Math Soc, 1995, 32: 541-551. [MathSciNet] [Google Scholar]
  11. Duncan D B. Symplectic finite difference approximations of the nonlinear Klein-Gordon equation[J]. SIAM J Numer Anal, 1997, 34: 1742-1760. [CrossRef] [MathSciNet] [Google Scholar]
  12. El-Sayed S M. The decomposition method for studying the Klein-Gordon equation[J]. Chaos Soliton Fract, 2003, 18: 1025-1030. [CrossRef] [Google Scholar]
  13. Hariharan G. Haar wavelet method for solving the Klein-Gordon and the Sine-Gordon equations[J]. Int J Nonlinear Sci, 2011, 11: 180-189. [Google Scholar]
  14. Pekmen B, Tezer-Sezgin M. Differential quadrature solution of nonlinear Klein-Gordon and Sine-Gordon equations[J]. Comput Phys Commun, 2012, 183: 1702-1713. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  15. Lynch MAM. Large amplitude instability in finite difference approximations to the Klein-Gordon equation[J]. Appl Numer Math, 1999, 31: 173-182. [Google Scholar]
  16. Guo B Y, Li X, Vazquez L. A Legendre spectral method for solving the nonlinear Klein-Gordon equation[J]. Math Appl Comput, 1996, 15 (1): 19-36. [Google Scholar]
  17. Li X, Guo B Y. A Legendre spectral method for solving nonlinear Klein-Gordon equation[J]. J Comput Math, 1997, 15 (2): 105-126. [MathSciNet] [Google Scholar]
  18. Zheng H, Wang F, Chen C S, et al. Improved 3D surface reconstruction via the method of fundamental solutions[J]. Numer Mathe Theory Me, 2020, 13(4): 973-985. [CrossRef] [Google Scholar]
  19. Zheng H, Xiong J G, Yuan Y, et al. Mixed-mode dynamic stress intensity factors by variation technique with finite block method[J]. Eng Anal Bound Elem, 2019, 106: 27-33. [CrossRef] [MathSciNet] [Google Scholar]
  20. Zheng H, Sladek J, Sladek V, et al. Fracture analysis of functionally graded material by hybrid meshless displacement discontinuity method[J]. Eng Fract Mech, 2021, 247: 107591. [CrossRef] [Google Scholar]
  21. Dehghan M, Shokri A. Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions[J]. J Comput Appl Math, 2009, 230: 400-410. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  22. Lakestani M, Dehghan M. Collocation and finite difference-collocation methods for the solution of nonlinear Klein-Gordon equation[J]. Comput Phys Commun, 2010, 181: 1392-1401. [NASA ADS] [CrossRef] [Google Scholar]
  23. Dehghan M, Mohammadi V. Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein-Gordon-Schrodinger (KGS) equations[J]. Comput Math Appl, 2016, 71: 892-921. [CrossRef] [MathSciNet] [Google Scholar]
  24. Shivanian E, Jafarabadi A. An improved meshless method for solving two- and three-dimensional coupled Klein-Gordon-Schrodinger equations on scattered data of general-shaped domains[J]. Eng Comput –GERMANY, 2018, 34: 757-774. [CrossRef] [Google Scholar]
  25. Ahmad I, Ahsan M, Hussain I, et al. Numerical simulation of PDEs by local meshless differential quadrature collocation method[J]. Symmetry-BASEL, 2019, 11(3): 394. [NASA ADS] [CrossRef] [Google Scholar]
  26. Myers D E, Iaco S D, Posa D, et al. Space-time radial basis functions[J]. Comput Math Appl, 2002, 43: 539-549. [CrossRef] [MathSciNet] [Google Scholar]
  27. Liu C, Ku C, Xiao J, et al. A novel spacetime collocation meshless method for solving two dimensional backward heat conduction problems[J]. CMES Comp Model Eng, 2019, 118(1): 229-252. [Google Scholar]
  28. Wang F Z, Chen W, Jiang X R. Investigation of regularization techniques for boundary knot method[J]. Commun Numer Meth Eng, 2010, 26: 1868-1877. [Google Scholar]
  29. Wang F Z, Chen W, Ling L. Combinations of the method of fundamental solutions for general inverse source identification problems[J]. Appl Math Comput, 2012, 219: 1173-1182. [CrossRef] [MathSciNet] [Google Scholar]
  30. Fasshauer G E, Zhang J G. On choosing optimal shape parameters for RBF approximation[J]. Numer Algorithms, 2007, 45: 345-368. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  31. Chen W, Hong Y X, Lin J. The sample solution approach for determination of the optimal shape parameter in the multiquadric function of the Kansa method[J]. Comput Math Appl, 2018, 75: 2942-2954. [CrossRef] [MathSciNet] [Google Scholar]
  32. El-Sayed S M. The decomposition method for studying the Klein-Gordon equation[J]. Chaos Soliton Fract, 2003, 18: 1025-1030. [CrossRef] [Google Scholar]
  33. Hussain A, Haq S, Uddin M. Numerical solution of Klein-Gordon and sine-Gordon equations by meshless method of lines[J]. Eng Anal Bound Elem, 2013, 37: 1351-1366. [CrossRef] [MathSciNet] [Google Scholar]
  34. Wang F Z, Hou E R, Salama S A, et al. Numerical Investigation of the nonlinear fractional Ostrovsky equation[J]. Fractals, 2022, 30(5): 22401429. [Google Scholar]
  35. Wang F Z, Khan M N, Ahmad I, et al. Numerical solution of traveling waves in chemical kinetics: Time fractional fishers equations[J]. Fractals, 2022, 30(2): 2240051. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.