Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 4, August 2022
Page(s) 349 - 360
DOI https://doi.org/10.1051/wujns/2022274349
Published online 26 September 2022
  1. Baloch S, Baloch M A, Zheng T L, et al. The coronavirus disease 2019 (COVID-19) pandemic [J]. Tohoku J Exp Med, 2020, 250(4): 271-278. [CrossRef] [PubMed] [Google Scholar]
  2. Wang J H, Jing R Z, Lai X Z, et al. Acceptance of COVID-19 vaccination during the COVID-19 pandemic in China [J]. Vaccines, 2020, 8(3): 482. [CrossRef] [Google Scholar]
  3. Kaptein S J F, Jacobs S, Langendries L, et al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2–infected hamsters, whereas hydroxychloroquine lacks activity[J]. PNAS, 2020, 117(43): 26955-26965. [CrossRef] [PubMed] [Google Scholar]
  4. Benton D J, Wrobel A G, Xu P Q, et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion[J]. Nature, 2020, 588(7837): 327-330. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  5. Clausen T M, Sandoval D R, Spliid C B, et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2[J]. Cell, 2020, 183(4): 1043-1057. [CrossRef] [PubMed] [Google Scholar]
  6. Daly J L, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection [J]. Science, 2020, 370(6518): 861-865. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  7. Koonrungsesomboon N, Na-Bangchang K, Karbwang J. Therapeutic potential and pharmacological activities of Atractylodes lancea (Thunb.) DC [J]. Asian Pacific Journal of Tropical Medicine, 2014, 7(6): 421-428. [CrossRef] [PubMed] [Google Scholar]
  8. Cheng Y, Mai J Y, Hou T L, et al. Antiviral activities of atractylon from atractylodis rhizoma [J]. Molecular Medicine Reports, 2016, 14(4): 3704-3710. [CrossRef] [PubMed] [Google Scholar]
  9. Wu C R, Jiang X, He S T, et al. Effects of QWBZP on T-cell subsets and their cytokines in intestinal mucosa of HRV infection suckling mice [J]. Journal of Ethnopharmacology, 2010, 131(1): 130-134. [CrossRef] [PubMed] [Google Scholar]
  10. Gu S H, Li L, Huang H, et al. Antitumor, antiviral, and anti-inflammatory efficacy of essential oils from Atractylodes macrocephala koidz. produced with different processing methods[J]. Molecules (Basel, Switzerland), 2019, 24(16): 2956. [Google Scholar]
  11. Zheng S C, Baak J P, Li S, et al. Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in corona virus disease 2019 (COVID-19), gives fundamental support to the clinical use of LHQW [J]. Phytomedicine, 2020, 79: 153336. [CrossRef] [PubMed] [Google Scholar]
  12. Hopkins A L. Network pharmacology: The next paradigm in drug discovery [J]. Nature Chemical Biology, 2008, 4(11): 682-690. [CrossRef] [PubMed] [Google Scholar]
  13. Li H, Zhang L. Study on the molecular mechanism of Atractylodes lancea in treating corona virus disease 2019(COVID-19) based on network pharmacology [J]. Journal of Chinese Medicinal Materials, 2020, 43(10): 2608-2612 (Ch). [Google Scholar]
  14. Ru J L, Li P, Wang J N, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines [J]. Journal of Cheminformatics, 2014, 6: 13. [CrossRef] [PubMed] [Google Scholar]
  15. Xue R C, Fang Z, Zhang M X, et al. TCMID: Traditional Chinese medicine integrative database for herb molecular mechanism analysis [J]. Nucleic Acids Research, 2012, 41(D1): D1089-D1095. [CrossRef] [PubMed] [Google Scholar]
  16. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules [J]. Scientific Reports, 2017, 7: 42717. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  17. Wang X, Shen Y H, Wang S W, et al. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database [J]. Nucleic Acids Research, 2017, 45(W1): W356-W360. [CrossRef] [PubMed] [Google Scholar]
  18. Liu X F, Ouyang S S, Yu B, et al. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach [J]. Nucleic Acids Research, 2010, 38(suppl_2): W609-W614. [CrossRef] [PubMed] [Google Scholar]
  19. Gfeller D, Michielin O, Zoete V. Shaping the interaction landscape of bioactive molecules [J]. Bioinformatics, 2013, 29(23): 3073-3079. [CrossRef] [PubMed] [Google Scholar]
  20. Daina A, Michielin O, Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules [J]. Nucleic Acids Research, 2019, 47(W1): W357-W364. [CrossRef] [PubMed] [Google Scholar]
  21. Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: From gene data mining to disease genome sequence analyses[J]. Current Protocols in Bioinformatics, 2016, 54: 1.30.1-1.30.33. [Google Scholar]
  22. Hamosh A, Scott A F, Amberger J S, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders [J]. Nucleic Acids Research, 2005, 33(suppl_1): D514-D517. [Google Scholar]
  23. Szklarczyk D, Gable A L, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets [J]. Nucleic Acids Research, 2018, 47(D1): D607-D613. [Google Scholar]
  24. Chin C H, Chen S H, Wu H H, et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome [J]. BMC Systems Biology, 2014, 8(4): S11. [CrossRef] [PubMed] [Google Scholar]
  25. Bader G D, Hogue C W V. An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4: 2. [CrossRef] [PubMed] [Google Scholar]
  26. Huang D W, Sherman B T, Lempicki R A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists [J]. Nucleic Acids Research, 2008, 37(1): 1-13. [Google Scholar]
  27. Li J L, Luo H, Liu X K, et al. Dissecting the mechanism of Yuzhi Zhixue Granule on ovulatory dysfunctional uterine bleeding by network pharmacology and molecular docking[J]. Chinese Medicine, 2020, 15: 113. [CrossRef] [PubMed] [Google Scholar]
  28. Hu S L, Wang J, Zhang Y J, et al. Three salvianolic acids inhibit 2019-nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2 [J]. Journal of Medical Virology, 2021, 93(5): 3143-3151. [CrossRef] [PubMed] [Google Scholar]
  29. Bardou P, Mariette J, Escudié F, et al. Jvenn: An interactive Venn diagram viewer [J]. BMC Bioinformatics, 2014, 15(1): 293. [Google Scholar]
  30. Yang Y, Islam M S, Wang J, et al. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective [J]. International Journal of Biological Sciences, 2020, 16(10): 1708-1717. [Google Scholar]
  31. Zhang Y, Xu Q H, Sun Z Y, et al. Current targeted therapeutics against COVID-19: Based on first-line experience in China [J]. Pharmacological Research, 2020, 157: 104854. [CrossRef] [PubMed] [Google Scholar]
  32. Luo C H, Ma L L, Liu H M, et al. Research progress on main symptoms of novel coronavirus pneumonia improved by traditional Chinese medicine [J]. Frontiers in Pharmacology, 2020, 11: 556885. [Google Scholar]
  33. Prajitha N, Athira S, Mohanan P. Pyrogens, a polypeptide produces fever by metabolic changes in hypothalamus: Mechanisms and detections [J]. Immunology Letters, 2018, 204: 38-46. [CrossRef] [PubMed] [Google Scholar]
  34. Reyes-Gibby C C, Wang J, Spitz M, et al. Genetic variations in interleukin-8 and interleukin-10 are associated with pain, depressed mood, and fatigue in lung cancer patients [J]. Journal of Pain and Symptom Management, 2013, 46(2): 161-172. [CrossRef] [PubMed] [Google Scholar]
  35. Kim J S, Lee J Y, Yang J W, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19 [J]. Theranostics, 2021, 11(1): 316-329. [Google Scholar]
  36. Park E J, Park S W, Kim H J, et al. Dehydrocostuslactone inhibits LPS-induced inflammation by p38MAPK-dependent induction of hemeoxygenase-1 in vitro and improves survival of mice in CLP-induced sepsis in vivo [J]. International Immunopharmacology, 2014, 22(2): 332-340. [CrossRef] [PubMed] [Google Scholar]
  37. Wang C H, Duan H J, He L C. Inhibitory effect of atractylenolide I on angiogenesis in chronic inflammation in vivo and in vitro [J]. European Journal of Pharmacology, 2009, 612(1/2/3): 143-152. [CrossRef] [PubMed] [Google Scholar]
  38. Li C Q, He L C, Jin J Q. Atractylenolide I and atractylenolide III inhibit Lipopolysaccharide-induced TNF-alpha and NO production in macrophages [J]. Phytotherapy Research PTR, 2007, 21(4): 347-353. [CrossRef] [PubMed] [Google Scholar]
  39. Li W H, Moore M J, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus [J]. Nature, 2003, 426(6965): 450-454. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  40. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor [J]. Cell, 2020, 181(2): 271-280. [CrossRef] [PubMed] [Google Scholar]
  41. Cantuti-Castelvetri L, Ojha R, Pedro L D, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity [J]. Science, 2020, 370(6518): 856-860. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.