Open Access
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 6, December 2022
Page(s) 453 - 464
Published online 10 January 2023
  1. Wu D, Ren G, Wang H, et al. The review of mechanical fault diagnosis methods based on convolutional neural network [J]. Journal of Mechanical Strength, 2020, 42(5): 1024-1032(Ch). [Google Scholar]
  2. Zhang Y, Zhang L L. Intelligent fault detection of reciprocating compressor using a novel discrete state space [J]. Mechanical Systems and Signal Processing, 2022, 169: 108583. [NASA ADS] [CrossRef] [Google Scholar]
  3. Pulido B, Zamarreno J M, Merino A, et al. State space neural networks and model-decomposition methods for fault diagnosis of complex industrial systems [J]. Engineering Applications of Artificial Intelligence, 2019, 79: 67-86. [CrossRef] [Google Scholar]
  4. Sakar C, Toz A C, Buber M, et al. Risk analysis of grounding accidents by mapping a fault tree into a Bayesian network [J]. Applied Ocean Research, 2021, 113(1): 1-12. [Google Scholar]
  5. Tan Q, Mu X W, Fu M, et al. A new sensor fault diagnosis method for gas leakage monitoring based on the naive Bayes and probabilistic neural network method [J]. Measurement, 2022, 194: 111037. [Google Scholar]
  6. Farshad M. Detection and classification of internal faults in bipolar HVDC transmission lines based on K-means data description method [J]. International Journal of Electrical Power & Energy Systems, 2019, 104: 615-625. [CrossRef] [Google Scholar]
  7. Chen G C, Liu Y, Ge Z Q. K-means Bayes algorithm for imbalanced fault classification and big data application [J]. J Process Control, 2019, 81: 54-64. [CrossRef] [Google Scholar]
  8. Yu Y, Peng M, Wang H J, et al. Improved PCA model for multiple fault detection, isolation and reconstruction of sensors in nuclear power plant [J]. Ann Nucl Energy, 2020, 148: 107662. [CrossRef] [Google Scholar]
  9. Li G N, Hu Y P. An enhanced PCA-based chiller sensor fault detection method using ensemble empirical mode decomposition based denoising [J]. Energy & Buildings, 2019, 183: 311-324. [CrossRef] [Google Scholar]
  10. Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems. New York: Curran Associates Inc, 2012: 1097-1105. [Google Scholar]
  11. Cho K, Merrienboer B V, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1724-1734. [Google Scholar]
  12. He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 770-778. [Google Scholar]
  13. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2017: 5998-6008. [Google Scholar]
  14. Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2022-06-17]. [Google Scholar]
  15. Hu J , Shen L, Albanie S, et al. Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [CrossRef] [PubMed] [Google Scholar]
  16. Asgari S, Gupta R, Puri I K, et al. A data-driven approach to simultaneous fault detection and diagnosis in data centers [J]. Applied Soft Computing, 2021, 110: 107638. [CrossRef] [Google Scholar]
  17. Chen Y J, Rao M, Feng K, et al. Physics-Informed LSTM hyperparameters selection for gearbox fault detection [J]. Mechanical Systems and Signal Processing, 2022, 171: 108907. [Google Scholar]
  18. Li J Q, Liu J, Chen Y T. A fault warning for inter-turn short circuit of excitation winding of synchronous generator based on GRU-CNN [J]. Global Energy Interconnection, 2022, 5(2): 236-248. [CrossRef] [Google Scholar]
  19. Rehmer A, Kroll A. On the vanishing and exploding gradient problem in Gated Recurrent Units [J]. IFAC-PapersOnLine, 2020, 53(2): 1243-1248. [CrossRef] [Google Scholar]
  20. Sak H, Senior A, Beaufays F. Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition[EB/OL]. [2022-06-17]. [Google Scholar]
  21. Kang S H, Han J H. New RNN activation technique for deeper networks: LSTCM cells [J]. IEEE Access, 2020, 8:214625-214632. [CrossRef] [Google Scholar]
  22. Wu H , Zhao J S. Deep convolutional neural network model based chemical process fault diagnosis [J]. Comput Chem Eng, 2018, 115: 185-197. [CrossRef] [Google Scholar]
  23. Song Q S, Jiang P. A multi-scale convolutional neural network based fault diagnosis model for complex chemical [J]. Process Saf Environ Prot, 2022, 159: 575-584. [CrossRef] [Google Scholar]
  24. Deng L, Zhang Y, Dai Y Y, et al. Integrating feature optimization using a dynamic convolutional neural network for chemical process supervised fault classification [J]. Process Safety and Environmental Protection, 2021, 155: 473-485. [CrossRef] [Google Scholar]
  25. Bai S, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2022-06-17]. [Google Scholar]
  26. Waibel A, Hanazawa T, Hinton G E, et al. Phoneme recognition using time-delay neural networks [J]. Readings in Speech Recognition, 1990, 1(3): 393-404. [CrossRef] [Google Scholar]
  27. Ji W, Chee K C. Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN [J]. Solar Energy, 2011, 85(5): 808-817. [NASA ADS] [CrossRef] [Google Scholar]
  28. Tang W P, Wang A Q, Ramkumar S, et al. Signal identification system for developing rehabilitative device using deep learning algorithms [J]. Artificial Intelligence in Medicine, 2020, 102: 101755. [CrossRef] [PubMed] [Google Scholar]
  29. Zhang X B, Xu X G, Zhu Y X. An improved time delay neural network model for predicting dynamic heat and mass transfer characteristics of a packed liquid desiccant dehumidifier [J]. Int J Therm Sci, 2022, 177: 107548. [CrossRef] [Google Scholar]
  30. Liang H P, Zhao X Q. Rolling bearing fault diagnosis based on one-dimensional dilated convolution network with residual connection[J]. IEEE Access, 2021, 9: 31078-31091. [CrossRef] [Google Scholar]
  31. Xia J, Feng Y W, Teng D, et al. Distance self-attention network method for remaining useful life estimation of aeroengine with parallel computing [J]. Reliability Engineering & System Safety, 2022, 225: 108636. [CrossRef] [Google Scholar]
  32. Reinartz C, Kulahci M, Ravn O. An extended Tennessee Eastman simulation dataset for fault-detection and decision support systems [J]. Comput Chem Eng, 2021, 149: 107281. [CrossRef] [Google Scholar]
  33. Yin S, Ding S X, Haghani A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process [J]. J Process Control, 2012, 22(9): 1567-1581. [CrossRef] [Google Scholar]
  34. Downs J J, Vogel E F. A plant-wide industrial process control problem [J]. Comput Chem Eng, 1993, 17(3): 245-255. [CrossRef] [Google Scholar]
  35. Ricker N L. Optimal steady-state operation of the Tennessee Eastman challenge process [J]. Comput Chem Eng, 1995, 19(9): 949-959. [CrossRef] [Google Scholar]
  36. Bathelt A, Ricker N L, Jelali M. Revision of the Tennessee Eastman process model[J]. IFAC PapersOnLine, 2015, 48(8): 309-314. [CrossRef] [Google Scholar]
  37. Rieth C A, Amsel B D, Tran R, et al. Issues and advances in anomaly detection evaluation for joint human-automated systems[C]// International Conference on Applied Human Factors and Ergonomics. Berlin: Springer-Verlag, 2017: 52-63. [Google Scholar]
  38. Xu Y, Cong K D, Zhu Q X, et al. A novel AdaBoost ensemble model based on the reconstruction of local tangent space alignment and its application to multiple faults recognition [J]. J Process Control, 2021, 104(3): 158-167. [CrossRef] [Google Scholar]
  39. Yu W B, Lv P. An end-to-end intelligent fault diagnosis application for rolling bearing based on MobileNet [J]. IEEE Access, 2021, 9: 41925-41933. □ [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.