Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 6, December 2022
|
|
---|---|---|
Page(s) | 476 - 488 | |
DOI | https://doi.org/10.1051/wujns/2022276476 | |
Published online | 10 January 2023 |
- Qiu T, Chi J C, Zhou X B, et al. Edge computing in Industrial Internet of Things: Architecture, advances and challenges[J]. IEEE Communications Surveys and Tutorials, 2020, 22(4): 2462 - 2488. [CrossRef] [Google Scholar]
- Hussain M, Beg M M. Fog computing for Internet of Things (IoT)-aided smart grid architectures[J]. Big Data and Cognitive Computing, 2019, 3(1): 1-29. [Google Scholar]
- Zhang Y Y, Liang K, Zhang S X, et al. Applications of edge computing in PIoT[C]// Proceedings of the IEEE Conference on Energy Internet and Energy System Integration. Washington D C: IEEE, 2018: 1-4. [Google Scholar]
- Li J, Xu X L. EERA: An energy-efficient resource allocation strategy for mobile cloud workflows[J]. IEEE Access, 2020, 8: 217008-217023. [CrossRef] [Google Scholar]
- Yang T T, Jiang Z, Sun R J, et al. Maritime search and rescue based on group mobile computing for UAVs and USVs[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7700-7708. [CrossRef] [Google Scholar]
- Ali I, Bagchi S. Isolating critical flow path and algorithmic partitioning of the AND/OR mobile workflow graph[J]. Future Generation Computer Systems, 2020, 103: 28-43. [CrossRef] [Google Scholar]
- Mao Y Y, You C S, Zhang J, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys and Tutorials, 2017, 19(4): 2322-2358. [CrossRef] [Google Scholar]
- Wang Z L, Li P F, Shen S, et al. Task offloading scheduling in mobile edge computing networks[J]. Procedia Computer Science, 2021, 184(4): 322-329. [Google Scholar]
- Xu J, Hao Z, Sun X. Optimal offloading decision strategies and their influence analysis of mobile edge computing[J]. Sensors, 2019, 19(14): 3231-3233. [Google Scholar]
- You Q, Tang B. Efficient task offloading using particle swarm optimization algorithm in edge computing for Industrial Internet of Things[J]. Journal of Cloud Computing, 2021, 10(1): 1-11. [Google Scholar]
- Hou W J, Wen H, Zhang N, et al. Incentive-driven task allocation for collaborative edge computing in Industrial Internet of Things[J]. IEEE Internet of Things Journal, 2022, 9(1): 706-718. [CrossRef] [Google Scholar]
- Chen Q M, Xu X X, Jiang H, et al. An energy-aware approach for Industrial Internet of Things in 5G pervasive edge computing environment[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 5087-5097. [CrossRef] [Google Scholar]
- Senthilkumar P, Rajesh K. Design of a model based engineering deep learning scheduler in cloud computing environment using Industrial Internet of Things (IIOT)[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 1: 1-9. [Google Scholar]
- Gerards M E T, Kuper J. Optimal DPM and DVFS for frame-based real-time systems[J]. ACM Transactions on Architecture and Code Optimization, 2013, 9(4): 1-23. [CrossRef] [Google Scholar]
- Satyanarayanan M, Bahl P, Caceres R, et al. The case for VM-based cloudlets in mobile computing[J]. IEEE Pervasive Computing, 2009, 8(4): 14-23. [CrossRef] [Google Scholar]
- Jararweh Y, Tawalbeh L, Ababneh F, et al. Resource efficient mobile computing using Cloudlet infrastructure[C]// IEEE International Conference on Mobile Ad-hoc & Sensor Networks. Washington D C: IEEE, 2013: 373-377. [Google Scholar]
- Li R, Li X J, Xu J, et al. Energy-aware decision‐making for dynamic task migration in MEC-based unmanned aerial vehicle delivery system[J]. Concurrency and Computation-Practice and Experience, 2020, 33(1): 1-18. [Google Scholar]
- Chen X, Jiao L, Li W Z, et al. Efficient multi-user computation offloading for mobile-edge cloud computing[J]. IEEE/ACM Transactions on Networking, 2016, 24(5): 2795-2808. [CrossRef] [Google Scholar]
- Wang Y T, Sheng M, Wang X J, et al. Mobile-edge computing: Partial computation offloading using dynamic voltage scaling[J]. IEEE Transactions on Communications, 2016, 64(10): 4268-4282. [Google Scholar]
- Li K Q. A game theoretic approach to computation offloading strategy optimization for non-cooperative users in mobile edge computing[J]. IEEE Transactions on Sustainable Computing, 2018, 9: 1-12. [NASA ADS] [CrossRef] [Google Scholar]
- Dai Y Y, Xu D, Maharjan S, et al. Joint computation offloading and user association in multi-task mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 12313-12325. [CrossRef] [Google Scholar]
- Mao Y Y, Zhang J, Letaief K B. Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems[C]//2017 IEEE Wireless Communications and Networking Conference. Washington D C: IEEE, 2017: 1-6. [Google Scholar]
- Zhang K, Leng S P, He Y J, et al. Mobile edge computing and networking for green and low-latency Internet of Things[J]. IEEE Communications Magazine, 2018, 56(5): 39-45. [CrossRef] [Google Scholar]
- Gupta S, Chakareski J. Lifetime maximization in mobile edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3310-3321. [CrossRef] [Google Scholar]
- Ranji R, Mansoor A M, Sani A A. EEDOS: An energy-efficient and delay-aware offloading scheme based on device to device collaboration in mobile edge computing[J]. Telecommunication Systems, 2020, 73(2): 171-182. [CrossRef] [Google Scholar]
- Wang J, Hu J, Min G Y, et al. Computation offloading in multi-access edge computing using a deep sequential model based on reinforcement learning[J]. IEEE Communications Magazine, 2019, 57(5): 64-69. [CrossRef] [Google Scholar]
- Silva F A, Zaicaner G, Quesado E, et al. Benchmark applications used in mobile cloud computing research: A systematic mapping study[J]// The Journal of Supercomputing, 2016, 72(4): 1431-1452. [CrossRef] [Google Scholar]
- Zhang W W, Wen Y G. Energy-efficient task execution for application as a general topology in mobile cloud computing[J]. Cloud Computing, 2018, 6(3):708-719. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.