Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 6, December 2022
Page(s) 489 - 498
DOI https://doi.org/10.1051/wujns/2022276489
Published online 10 January 2023
  1. National Boiler and Pressure Vessel Standardization Technical Committee (SAC/TC 262). NB/T 47013-2015. Nondestructive Testing of Pressure Equipment [S].Beijing: National Energy Administration, 2015(Ch). [Google Scholar]
  2. ISO/TC 44, Welding and Allied Processes, Subcommittee SC 10. EN ISO 5817:2014. Welding - fusion Welded Joints of Steel, Nickel, Titanium and Their Alloys (except beam welding) - Quality Levels of Imperfections[S].Brussels: CEN-CENELEC Management Centre , 2014. [Google Scholar]
  3. Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [CrossRef] [PubMed] [Google Scholar]
  4. He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778. [Google Scholar]
  5. Xie S N, Girshick R, Dollár P, et al. Aggregated Residual Transformations for Deep Neural Networks [C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 5987-5995. [Google Scholar]
  6. Tan M X, Le Q V. EfficientNet: Rethinking model scaling for convolutional neural networks [C]// Proceedings of the 36th International Conference on Machine Learning. New York: IEEE, 2019, 97: 6105-6114. [Google Scholar]
  7. Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788. [Google Scholar]
  8. Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]// Computer Vision – ECCV 2016.Berlin: Springer-Verlag, 2016, 9905: 21-37. [Google Scholar]
  9. Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [CrossRef] [Google Scholar]
  10. Cai Z W, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 6154-6162. [Google Scholar]
  11. He K M, Gkioxari G, Dollár P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397. [CrossRef] [PubMed] [Google Scholar]
  12. Chen L C, Zhu Y K, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Computer Vision – ECCV 2018.Berlin: Springer-Verlag, 2018, 11211: 833-851. [Google Scholar]
  13. Wang T, Chen Y, Qiao M N, et al. A fast and robust convolutional neural network-based defect detection model in product quality control[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9-12): 3465-3471. [CrossRef] [Google Scholar]
  14. Chen J W, Liu Z G, Wang H R, et al. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(2): 257-269. [NASA ADS] [CrossRef] [Google Scholar]
  15. Tao X, Zhang D P, Ma W Z, et al. Automatic metallic surface defect detection and recognition with convolutional neural networks[J]. Applied Sciences, 2018, 8(9): 1575-1589. [CrossRef] [Google Scholar]
  16. Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context[C]//Computer Vision – ECCV 2014. New York: IEEE, 2014, 8693: 740-755. [Google Scholar]
  17. Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2020, 42(2): 318-327. [CrossRef] [PubMed] [Google Scholar]
  18. Law H, Deng J. CornerNet: Detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128(3): 642-656. [CrossRef] [Google Scholar]
  19. Zhou X Y, Zhuo J C, Krähenbühl P. Bottom-up object detection by grouping extreme and center points[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 850-859. [Google Scholar]
  20. Yang Z, Liu S H, Hu H, et al. RepPoints: Point set representation for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2019: 9656-9665. [Google Scholar]
  21. Luo W J, Li Y J, Urtasun R, et al. Understanding the effective receptive field in deep convolutional neural networks [C]// Advances in Neural Information Processing Systems (NIPS). New York: IEEE, 2016: 4898-4906. [Google Scholar]
  22. Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [CrossRef] [PubMed] [Google Scholar]
  23. Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. [2017-12-05]. https://www.arXiv:1706.05587. [Google Scholar]
  24. Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2818-2826. [Google Scholar]
  25. Liu S T, Huang D, Wang Y H. Receptive field block net for accurate and fast object detection[C]//Computer Vision – ECCV 2018. New York: IEEE, 2018, 11215: 404-419. [Google Scholar]
  26. Wu T Y, Tang S, Zhang R, et al. Tree-structured kronecker convolutional network for semantic segmentation[C]//2019 IEEE International Conference on Multimedia and Expo. New York: IEEE, 2019: 940-945. [Google Scholar]
  27. Hu Y N, Wang J, Zhu Y Q, et al. Automatic defect detection from X-ray scans for aluminum conductor composite core wire based on classification neutral network[J]. NDT & E International, 2021, 124: 102549. [CrossRef] [Google Scholar]
  28. Ferguson M, Ak R, Lee Y T T, et al. Detection and segmentation of manufacturing defects with convolutional neural networks and transfer learning[J]. Smart and Sustainable Manufacturing Systems, 2018, 2(1): 210-237. [Google Scholar]
  29. Tokime R B, Maldague X, Perron L. Automatic defect detection for X-ray inspection: Identifying defects with deep convolutional network [C]// Canadian Institute for Non-destructive Evaluation (CINDE). New York: IEEE, 2019. [Google Scholar]
  30. Duan F, Yin S F, Song P P, et al. Automatic welding defect detection of X-ray images by using cascade Adaboost with penalty term[J]. IEEE Access, 2019, 7: 125929-125938. [CrossRef] [Google Scholar]
  31. Detectron. Meta Research [DB/OL]. [2022-02-16]. https://github.com/facebookresearch/Detectron. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.