Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 6, December 2022
Page(s) 508 - 520
DOI https://doi.org/10.1051/wujns/2022276508
Published online 10 January 2023
  1. Weber P A, Zhang N, Wu H M. A comparative analysis of personal data protection regulations between the EU and China [J]. Electronic Commerce Research, 2020, 20(3): 565-587. [CrossRef] [Google Scholar]
  2. Guo P F, Wang P Y, Zhou J Y, et al. Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2021: 2423-2432. [Google Scholar]
  3. Kairouz P, McMahan H B, Avent B, et al. Advances and open problems in federated learning [J]. Foundations and Trends® in Machine Learning, 2021, 14(1/2): 1-210. [CrossRef] [Google Scholar]
  4. McMahan H B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data [EB/OL]. [2022-09-17]. https://arxiv.org/abs/1602.05629. [Google Scholar]
  5. Mothukuri V. A survey on security and privacy of federated learning [J]. Future Generation Computer Systems, 2021, 115: 619-640. [CrossRef] [Google Scholar]
  6. Wang X F, Wang C Y, Li X H, et al. Federated deep reinforcement learning for Internet of Things with decentralized cooperative edge caching [J]. IEEE Internet of Things Journal, 2020, 7(10): 9441-9455. [CrossRef] [Google Scholar]
  7. Samarakoon S, Bennis M, Saad W, et al. Distributed federated learning for ultra-reliable low-latency vehicular communications [J]. IEEE Transactions on Communications, 2020, 68(2): 1146-1159. [CrossRef] [Google Scholar]
  8. Begum A M, Mondal M R H, Podder P, et al. Detecting spinal abnormalities using multilayer perceptron algorithm [C]//Innovations in Bio-Inspired Computing and Applications. Cham: Springer International Publishing, 2022: 654-664. [Google Scholar]
  9. Dong J H, Cong Y, Sun G, et al. What can be transferred: Unsupervised domain adaptation for endoscopic lesions segmentation [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 4022-4031. [Google Scholar]
  10. Yang Q, Zhang J Y, Hao W T, et al. FLOP: Federated learning on medical datasets using partial networks [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 3845-3853. [Google Scholar]
  11. Ramaswamy S, Mathews R, Rao K, et al. Federated learning for emoji prediction in a mobile keyboard [EB/OL]. [2022-09-23]. https://arxiv.org/abs/1906.04329. [Google Scholar]
  12. Duan M M, Liu D, Chen X Z, et al. Self-balancing federated learning with global imbalanced data in mobile systems [J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(1): 59-71. [CrossRef] [Google Scholar]
  13. Karimireddy S P, Kale S, Mohri M, et al. SCAFFOLD: Stochastic controlled averaging for on-device federated learning [EB/OL]. [2022-09-23]. https://arxiv.org/abs/1910.06378. [Google Scholar]
  14. Khaled A, Mishchenko K, Richtárik P. Tighter theory for local SGD on identical and heterogeneous data [EB/OL]. [2022-09-23]. https://arxiv.org/abs/1909.04746. [Google Scholar]
  15. Jiang M R, Wang Z R, Dou Q. HarmoFL: Harmonizing local and global drifts in federated learning on heterogeneous medical images [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 1087-1095. [CrossRef] [Google Scholar]
  16. Li T, Sahu A K, Zaheer M, et al. Federated optimization in heterogeneous networks [EB/OL]. [2022-09-23]. https://arxiv.org/abs/1812.06127. [Google Scholar]
  17. Hsieh K, Phanishayee A, Mutlu O, et al. The non-IID data quagmire of decentralized machine learning [C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 4387-4398. [Google Scholar]
  18. Wang J Y, Liu Q H, Liang H, et al. Tackling the objective inconsistency problem in heterogeneous federated optimization[EB/OL]. [2022-09-23]. https://arxiv.org/abs/2007.07481. [Google Scholar]
  19. Li T, Hu S Y, Beirami A, et al. Ditto: Fair and robust federated learning through personalization [EB/OL]. [2022-09-23]. https://arxiv.org/abs/2012.04221. [Google Scholar]
  20. Li T, Sahu A K, Zaheer M, et al. Federated optimization in heterogeneous networks [EB/OL]. [2022-09-23]. https://arxiv.org/abs/1812.06127. [Google Scholar]
  21. Deng Y Y, Kamani M M, Mahdavi M. Adaptive personalized federated learning [EB/OL]. [2022-09-23]. https://arxiv.org/abs/2003.13461. [Google Scholar]
  22. Zhu L, Liu Z, Han S. Deep leakage from gradients [EB/OL]. [2022-09-23]. https://arxiv.org/pdf/1906.08935. [Google Scholar]
  23. Zhao B, Mopuri K R, Bilen H. iDLG: Improved deep leakage from gradients [EB/OL]. [2022-09-23]. https://arxiv.org/abs/2001.02610. [Google Scholar]
  24. Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 4080-4090. [Google Scholar]
  25. Chen X L, He K M. Exploring simple Siamese representation learning [C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2021: 15745-15753. [Google Scholar]
  26. Li Q B, He B S, Song D. Model-contrastive federated learning [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2021: 10708-10717. [Google Scholar]
  27. Fallah A, Mokhtari A, Ozdaglar A. Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 3557-3568. [Google Scholar]
  28. Arivazhagan M G, Aggarwal V, Singh A K, et al. Federated learning with personalization layers [EB/OL]. [2022-09-30]. https://arxiv.org/abs/1912.00818. [Google Scholar]
  29. Collins L, Hassani H, Mokhtari A, et al. Exploiting shared representations for personalized federated learning [EB/OL]. [2022-09-23]. https://arxiv.org/abs/2102.07078. [Google Scholar]
  30. He K M, Fan H Q, Wu Y X, et al. Momentum contrast for unsupervised visual representation learning [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 9726-9735. [Google Scholar]
  31. Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations [EB/OL]. [2022-09-23]. https://arxiv.org/abs/2002.05709. [Google Scholar]
  32. Khosla P, Teterwak P, Wang C, et al. S3upervised contrastive learning [EB/OL]. [2022-09-23]. https://arxiv.org/abs/2004.11362. [Google Scholar]
  33. van Berlo B, Saeed A, Ozcelebi T. Towards federated unsupervised representation learning [C]// Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking. New York: ACM, 2020: 31-36. [Google Scholar]
  34. Wang P, Han K, Wei X S, et al. Contrastive learning based hybrid networks for long-tailed image classification [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2021: 943-952. [Google Scholar]
  35. Wang W, Zhou T, Yu F, et al. Exploring cross-image pixel contrast for semantic segmentation [C]//2021 IEEE/CVF International Conference on Com-puter Vision (ICCV). New York: IEEE, 2021: 7283-7293. [Google Scholar]
  36. Song G C, Chai W. Collaborative learning for deep neural networks [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 1837-1846. [Google Scholar]
  37. Wainakh A, Ventola F, Müßig T, et al. User-level label leakage from gradients in federated learning [J]. Proceedings on Privacy Enhancing Technologies, 2022, 2022(2): 227-244. [Google Scholar]
  38. Li T, Sahu A K, Zaheer M, et al. FedDANE: A federated Newton-type method [C]//2019 53rd Asilomar Conference on Signals, Systems, and Computers. New York: IEEE, 2019: 1227-1231. [Google Scholar]
  39. Zhao Y, Li M, Lai L Z, et al. Federated learning with non-iid data[EB/OL].[2022-09-23]. https://arxiv.org/abs/1806.00582. [Google Scholar]
  40. Yu F X, Rawat A S, Menon A K, et al. Federated learning with only positive labels [C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 10946-10956. [Google Scholar]
  41. van der Maaten L, Hinton G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9: 2579-2625. [Google Scholar]
  42. Oord A V D, Li Y Z, Vinyals O. Representation learning with contrastive predictive coding [EB/OL]. [2022-09-23]. https://arxiv.org/abs/1807.03748. [Google Scholar]
  43. Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images[EB/OL].[2022-09-23]. https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086. [Google Scholar]
  44. Caldas S, Duddu S M K, Wu P, et al. LEAF: A benchmark for federated settings [EB/OL]. [2022-09-23]. https://arxiv.org/abs/1812.01097. [Google Scholar]
  45. Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization [J]. Mathematical Programming, 1989, 45(1): 503-528. [Google Scholar]
  46. Zhang F D, Kuang K, You Z Y, et al. Federated unsupervised representation learning [EB/OL]. [2022-09-23]. https://arxiv.org/abs/2010.08982. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.