Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 6, December 2022
Page(s) 521 - 530
DOI https://doi.org/10.1051/wujns/2022276521
Published online 10 January 2023
  1. Aghabozorgi S, Seyed Shirkhorshidi A, Ying Wah T. Time-series clustering—A decade review [J]. Information Systems, 2015, 53: 16-38. [CrossRef] [Google Scholar]
  2. Rabiner L, Juang B. An introduction to hidden Markov models [J]. IEEE ASSP Magazine, 1986, 3(1): 4-16. [CrossRef] [Google Scholar]
  3. Luenberger D G. Theory, Models, and Applications [M]. New York: Wiley, 1979. [Google Scholar]
  4. Wang X Y, Mueen A, Ding H, et al. Experimental comparison of representation methods and distance measures for time series data [J]. Data Mining and Knowledge Discovery, 2013, 26(2): 275-309. [CrossRef] [MathSciNet] [Google Scholar]
  5. Längkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series modeling [J]. Pattern Recognition Letters, 2014, 42: 11-24. [CrossRef] [Google Scholar]
  6. Wang H S, Zhang Q, Wu J, et al. Time series feature learning with labeled and unlabeled data [J]. Pattern Recognition, 2019, 89: 55-66. [NASA ADS] [CrossRef] [Google Scholar]
  7. Jing L L, Tian Y L. Self-supervised visual feature learning with deep neural networks: A survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4037-4058. [CrossRef] [PubMed] [Google Scholar]
  8. Doersch C, Gupta A, Efros A A. Unsupervised visual representation learning by context prediction [C]// IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1422-1430. [Google Scholar]
  9. Gidaris S, Singh P, Komodakis N. Unsupervised representation learning by predicting image rotations [EB/OL]. [2022-09-11]. https://arxiv.org/abs/1803.07728. [Google Scholar]
  10. Jaiswal A, Babu A R, Zadeh M Z, et al. A survey on contrastive self-supervised learning [J]. Technologies, 2020, 9(1): 2. [Google Scholar]
  11. Eldele E, Ragab M, Chen Z H, et al. Time-series representation learning via temporal and contextual contrasting [EB/OL]. [2022-09-11]. https://arxiv.org/abs/2106.14112. [Google Scholar]
  12. Sarkar P, Etemad A. Self-supervised ECG representation learning for emotion recognition [J]. IEEE Transactions on Affective Computing, 2022, 13(3): 1541-1554. [CrossRef] [Google Scholar]
  13. Löwe S, O'Connor P, Veeling B S. Putting an end to end-to-end: Gradient-isolated learning of representations [EB/OL]. [2022-09-11]. https://arxiv.org/abs/1905.11786. [Google Scholar]
  14. Oord A V D, Li Y Z, Vinyals O. Representation learning with contrastive predictive coding [EB/OL]. [2022-09-11]. https://arxiv.org/abs/1807.03748. [Google Scholar]
  15. Franceschi J Y, Dieuleveut A, Jaggi M. Unsupervised scalable representation learning for multivariate time series [EB/OL]. [2022-08-09]. https://arxiv.org/abs/1901.10738. [Google Scholar]
  16. Tonekaboni S, Eytan D, Goldenberg A. Unsupervised representation learning for time series with temporal neighborhood coding [EB/OL]. [2022-09-20]. https://arxiv.org/abs/2106.00750. [Google Scholar]
  17. Iwana B K, Uchida S. An empirical survey of data augmentation for time series classification with neural networks [J]. PLoS One, 2021, 16(7): e0254841. [Google Scholar]
  18. Zhou H Y, Zhang S H, Peng J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106-11115. [CrossRef] [Google Scholar]
  19. Bazi Y, Bashmal L, Rahhal M M A, et al. Vision transformers for remote sensing image classification [J]. Remote Sensing, 2021, 13(3): 516. [NASA ADS] [CrossRef] [Google Scholar]
  20. Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding [EB/OL]. [2022-10-09]. https://arxiv.org/abs/1810.04805. [Google Scholar]
  21. Anguita D, Ghio A, Oneto L, et al. A public domain dataset for human activity recognition using smartphones[J]. 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2013: 437-442. [Google Scholar]
  22. Goldberger A L, Amaral L A N, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet [J]. Circulation, 2000, 101(23): e215-e220. [PubMed] [Google Scholar]
  23. Andrzejak R G, Lehnertz K, Mormann F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J]. Physical Review E, 2001, 64(6): 061907. [Google Scholar]
  24. Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 1597-1607. [Google Scholar]
  25. van der Maaten L, Hinton G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9(11): 2579-260. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.