Open Access
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 1, February 2023
Page(s) 45 - 52
Published online 17 March 2023
  1. Dettmers T, Minervini P, Stenetorp P, et al. Convolutional 2D knowledge graph embeddings [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 1811-1818. [Google Scholar]
  2. Bordes A, Usunier N, Duran A G, et al. Translating embeddings for modeling multi-relational data [J]. Advances in neural Information Processing Systems, 2013, 26(1282): 2787-2795. [Google Scholar]
  3. Ji G L, He S Z, Xu L H, et al. Knowledge graph embedding via dynamic mapping matrix [C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 687-696. [Google Scholar]
  4. Lin Y K, Liu Z Y, Luan H B, et al. Modeling relation paths for representation learning of knowledge bases [EB/OL]. [2022-08-05]. [Google Scholar]
  5. Nickel M, Tresp V, Kriegel H P. A three-way model for collective learning on multi-relational data [C]// Proceedings of the 28th International Conference on Machine Learning. New York: ACM, 2011: 809-816. [Google Scholar]
  6. Yang B S, Yih W T, He X D, et al. Embedding entities and relations for learning and inference in knowledge bases [EB/OL]. [2022-08-29]. [Google Scholar]
  7. Trouillon T, Gaussier É, Bouchard G. Complex embeddings for simple link prediction [C]// International Conference on Machine Learning. New York: ACM, 2016: 2071-2080. [Google Scholar]
  8. Sun Z Q, Deng Z H, Nie J Y, et al. RotatE: Knowledge graph embedding by relational rotation in complex space[EB/OL]. [2022-08-29]. [Google Scholar]
  9. Chen X. Multilingual knowledge graph completion via ensemble knowledge transfer [EB/OL]. [2022-06-08]. [Google Scholar]
  10. Trisedya B D, Qi J Z, Zhang R. Entity alignment between knowledge graphs using attribute embeddings [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 297-304. [Google Scholar]
  11. Zhang Q H, Sun Z Q, Qu Y Z. Multi-view knowledge graph embedding for entity alignment [EB/OL]. [2022-08-06]. [Google Scholar]
  12. Yang H W, Zou Y Y, Shi P, et al. Aligning cross-lingual entities with multi-aspect information [EB/OL]. [2022-08-20]. [Google Scholar]
  13. Marcheggiani D, Titov I. Encoding sentences with graph convolutional networks for semantic role labeling [EB/OL]. [2022-07-30]. [Google Scholar]
  14. Bastings J, Titov I, Aziz W, et al. Graph convolutional encoders for syntax aware neural machine translation [EB/OL]. [2022-08-18]. [Google Scholar]
  15. Thomas N, Kipf T N, Welling M. Semi supervised classification with graph convolutional networks [EB/OL]. [2022-08-22]. [Google Scholar]
  16. Schlichtkrull M, Kipf T N, Bloem P, et al. Modeling relational data with graph convolutional networks [C]// European Semantic Web Conference. Cham: Springer International Publishing, 2018: 593-607. [Google Scholar]
  17. Veličković P, Cucurull G, Casanova A, et al. Graph attention networks [EB/OL]. [2022-08-26]. [Google Scholar]
  18. Conneau A, Lample G, J´egou H. Word translation without parallel data [EB/OL]. [2022-08-30]. [Google Scholar]
  19. Kingma D P, Ba J. Adam: A method for stochastic optimization [EB/OL]. [2022-07-30]. [Google Scholar]
  20. Freund Y, Schapire R E. A decision-theoretic generalization of online learning and an application to boosting [J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. [Google Scholar]
  21. Freund Y, Iyer R D, Schapire R E, et al. An efficient boosting algorithm for combining preferences [J]. Journal of Machine Learning Research, 2003, 4: 933-969. [Google Scholar]
  22. Artetxe M, Labaka G, Agirre E. A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings [EB/OL]. [2022-08-26]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.