Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 1, February 2023
|
|
---|---|---|
Page(s) | 53 - 60 | |
DOI | https://doi.org/10.1051/wujns/2023281053 | |
Published online | 17 March 2023 |
- Blomgren P, Chan T F. Color TV: Total variation methods for restoration of vector-valued images[J]. IEEE Transactions on Image Processing, 1998, 7(3):304-309. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bertalmio M, Caselles V, Rouge B, et al. A TV based restoration model with local constraints. [J]. Journal of Scientific Computing, 2003, 19(1):95-122. [Google Scholar]
- Li H, Liu F. Image denoising via sparse and redundant representations over learned dictionaries in wavelet domain[C]// 2009 Fifth International Conference on Image and Graphics. Washington D C: IEEE, 2009: 754-758. [Google Scholar]
- Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2007, 17(1):53-69. [Google Scholar]
- Aharon M, Elad M, Bruckstein A M. On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them[J]. Linear Algebra & Its Applications, 2006, 416(1):48-67. [CrossRef] [MathSciNet] [Google Scholar]
- Zha Z, Yuan X, Zhu C, et al. Image restoration via simultaneous nonlocal selfsimilarity priors[J]. IEEE Transactions on Image Processing, 2020, 29: 8561-8576. [NASA ADS] [CrossRef] [Google Scholar]
- Gu S H, Zhang L, Zuo W M, et al. Weighted nuclear norm minimization with application to image denoising[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington D C : IEEE, 2014: 2862-2869. [Google Scholar]
- Zhang K, Zuo W M, Chen Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2016, 26(7):3142-3155. [Google Scholar]
- Dong W S, Wang P Y, Yin W T, et al. Denoising prior driven deep neural network for image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(10): 2305-2318. [CrossRef] [PubMed] [Google Scholar]
- Zhang K, Zuo W M, Gu S H, et al. Learning deep CNN denoiser prior for image restoration[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D C : IEEE, 2017: 2808-2817. [Google Scholar]
- Aharon M, Elad M, Bruckstein. A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. [CrossRef] [Google Scholar]
- Mairal J, Bach F, Ponce J, et al. Non-local sparse models for image restoration[C]// 2009 IEEE 12th International Conference on Computer Vision. Washington D C : IEEE, 2009: 2272-2279 [Google Scholar]
- Dong W S, Zhang L, Shi G M, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transcation on Image Processing, 2013, 22(4):1620-1630. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang J, Zhao D B, Gao W. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336-3351. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Zha Z Y, Yuan X, Wen B H, et al. Group sparsity residual constraint with non-local priors for image restoration[J]. IEEE Transactions on Image Processing, 2020, 29: 8960-8975. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Bai M, Zhang X, Shao Q. Adaptive correction procedure for TVL1 image deblurring under impulse noise[J]. Inverse Problems, 2016, 32(8): 289-338. [Google Scholar]
- Rahimi Y, Wang C, Dong H B, et al. A scale-invariant approach for sparse signal recovery[J]. SIAM Journal on Scientific Computing, 2019, 41(6):A3649-A3672. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Xu Z B, Chang X Y, Xu F M, et al. L-1/2 regularization: A thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7):1013-1027. [CrossRef] [PubMed] [Google Scholar]
- Zuo W M, Meng D Y, Zhang L, et al. A generalized iterated shrinkage algorithm for non-convex sparse coding[C]// 2013 IEEE International Conference on Computer Vision. Washington D C: IEEE, 2013: 217-224. [Google Scholar]
- Jia X, Feng X. Bayesian inference for adaptive low rank and sparse matrix estimation[J]. Neurocomputing, 2018(5):71-83. [CrossRef] [Google Scholar]
- Keller J M, Gray M R, Givens J A. A fuzzy k-nearest neighbor algorithm[J]. IEEE Transactions on Systems Man & Cybernetics,1985, SMC-15(4): 580-585. [CrossRef] [Google Scholar]
- Dong W S, Lei Z, Shi G M, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J]. IEEE Transactions on Image Processing, 2011, 20(7):1838-1857. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Buades A, Coll B, Morel J M. A non-local algorithm for image denoising[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Washington D C: IEEE, 2005, 2: 60-65. [Google Scholar]
- Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095. [CrossRef] [Google Scholar]
- Xu J, Zhang L , Zuo W M, et al. Patch group based nonlocal self-similarity prior learning for image denoising[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Washington D C: IEEE, 2016: 244-252. [Google Scholar]
- Dong W S, Shi G M, Li X. Nonlocal image restoration with bilateral variance estimation: A low-rank approach[J]. IEEE Transactions on Image Processing, 2013, 22(2):700-711. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.