Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 1, February 2023
|
|
---|---|---|
Page(s) | 61 - 67 | |
DOI | https://doi.org/10.1051/wujns/2023281061 | |
Published online | 17 March 2023 |
- Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12):3736-3745. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Guo Q , Zhang C M, Zhang Y F, et al. An efficient SVD-based method for image denoising[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(5):868-880. [CrossRef] [Google Scholar]
- Foi A , Katkovnik V , Egiazarian K . Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images[J]. IEEE Transactions on Image Processing, 2007, 16(5): 1395-1411. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Katkovnik V, Ponomarenko M, Egiazarian K. Complex domain nonlocal block-matching denoising based on high-order singular value decomposition (HOSVD)[C] // 2017 25th European Signal Processing Conference (EUSIPCO). Washington D C: IEEE, 2017: 718-722. [Google Scholar]
- Dong W S, Shi G M, Ma Y, et al. Image restoration via simultaneous sparse coding: where structured sparsity meets Gaussian scale mixture[J]. International Journal of Computer Vision, 2015, 114(2-3):217-232. [CrossRef] [MathSciNet] [Google Scholar]
- Buades A, Coll B, Morel J. A non-local algorithm for image denoising[C] // 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Washington D C: IEEE, 2005, 2: 60-65. [Google Scholar]
- Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. [CrossRef] [Google Scholar]
- Jia X X, Feng X, Wang W, et al. Bayesian inference for adaptive low rank and sparse matrix estimation[J]. Neurocomputing, 2018, 291(24):71-83. [Google Scholar]
- Fazel S M. Matrix Rank Minimization with Applications [D].Palo Alto: Stanford University, 2002. [Google Scholar]
- Cai J F, Candès E J, Shen Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization , 2010, 20(4): 1956-1982. [CrossRef] [MathSciNet] [Google Scholar]
- Gu S H, Zhang L, Zuo W, et al. Weighted nuclear norm minimization and its applications to low level vision[J]. International Journal of Computer Vision, 2017, 121(2): 183-208. [CrossRef] [Google Scholar]
- Gu S H, Zhang L, Zuo W, et al. Weighted nuclear norm minimization with application to image denoising[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D C: IEEE, 2014: 2862-2869. [Google Scholar]
- Zhang J, Zhao D, Gao W. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8):3336. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Wang Q, Zhang X G, Wu Y, et al. Non-convex weighted lp minimization based group sparse representation framework for image denoising[J]. IEEE Signal Processing Letters, 2017, 24(11): 1686-1690. [NASA ADS] [CrossRef] [Google Scholar]
- Mairal J, Bach F, Ponce J, et al. Non-local sparse models for image restoration[C]// 2009 IEEE 12th International Conference on Computer Vision. Washington D C: IEEE, 2009: 2272-2279. [Google Scholar]
- Li S T, Yin H T, Fang L Y. Group-sparse representation with dictionary learning for medical image denoising and fusion[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(12):3450-3459. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Keller J M, Gray M R, Givens J A. A fuzzy k-nearest neighbor algorithm[J]. IEEE Transactions on Systems Man & Cybernetics, 1985, 15(4):580-585. [CrossRef] [Google Scholar]
- Donoho D L . For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829. [CrossRef] [MathSciNet] [Google Scholar]
- Candès E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis & Applications, 2008, 14(5-6): 877-905. [CrossRef] [MathSciNet] [Google Scholar]
- Xu Z B, Chang X Y, Xu F M, et al. L-1/2 Regularization: A thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7):1013-1027. [CrossRef] [PubMed] [Google Scholar]
- Xie Y, Gu S H, Liu Y, et al. Weighted schatten p-norm minimization for image denoising and background subtraction[J]. IEEE Transactions on Image Processing, 2016, 25(10):4842-4857. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Chartrand R, Wohlberg B. A nonconvex ADMM algorithm for group sparsity with sparse groups[C]// 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D C: IEEE, 2013: 6009-6013. [Google Scholar]
- Fu H Y, Ng M K, Nikolova M, et al. Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration[J]. SIAM Journal on Scientific Computing, 2006, 27(6):1881-1902. [CrossRef] [MathSciNet] [Google Scholar]
- Zha Z Y, Yuan X, Wen B H, et al. A benchmark for sparse coding: When group sparsity meets rank minimization[J]. IEEE Transactions on Image Processing, 2020, 29:5094-5109. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Zoran D , Weiss Y. From learning models of natural image patches to whole image restoration [C]// IEEE International Conference on Computer Vision. Washington D C: IEEE, 2011: 479-486. [Google Scholar]
- Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13: 600-612. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.