Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 3, June 2023
Page(s) 192 - 200
DOI https://doi.org/10.1051/wujns/2023283192
Published online 13 July 2023
  1. Trinajstić N. Chemical Graph Theory[M]. Boca Ratan: CRC Press, 2018. [CrossRef] [Google Scholar]
  2. Randić M. On the characterization of local aromatic properties in benzenoid hydrocarbons[J]. Tetrahedron, 1974, 30(14): 2067-2074. [CrossRef] [Google Scholar]
  3. Swinborne R, Herndon W C, Gutman I. Kekulé structures and resonance energies of benzenoid hydrocarbons[J]. Tetrahedron Letters, 1975, 16(10): 755-758. [CrossRef] [Google Scholar]
  4. Valiant L G. The complexity of computing the permanent[J]. Theoretical Compute Science, 1979, 8(2): 189-201. [CrossRef] [MathSciNet] [Google Scholar]
  5. Došlić T. Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages[J]. Journal of Mathematical Chemistry, 2003, 33(2): 103-112. [CrossRef] [MathSciNet] [Google Scholar]
  6. Kardoš F, Král' D, Miškuf J, et al. Fullerene graphs have exponentially many perfect matchings[J]. Journal of Mathematical Chemistry, 2009, 46(2): 443-447. [CrossRef] [MathSciNet] [Google Scholar]
  7. Lovász L, Plummer M D. Matching Theory[M]. New York: North-Holland Press, 1986. [Google Scholar]
  8. Esperet L, Kardoš F, King A D, et al. Exponentially many perfect matchings in cubic graphs[J]. Advances in Mathematics, 2011, 227(4): 1646-1664. [CrossRef] [MathSciNet] [Google Scholar]
  9. Feng X, Zhang L, Zhang M. Enumeration of perfect matchings of lattice graphs by Pfaffians[J]. Applied Mathematics and Computation, 2018, 338: 412-420. [CrossRef] [MathSciNet] [Google Scholar]
  10. Zhang L Z, Wei S L, Lu F L. The number of Kekulé structures of polyominos on the torus[J]. Journal of Mathematical Chemistry, 2013, 51(1): 354-368. [CrossRef] [MathSciNet] [Google Scholar]
  11. Yang R, Zhang H P. Hexagonal resonance of (3,6)-fullerens[J]. Journal of Mathematical Chemistry, 2012, 50(1): 261-273. [CrossRef] [MathSciNet] [Google Scholar]
  12. Sun C H, Zhang H P. On bicriticality of (3,6)-fullerene graphs[J]. Journal of Mathematical Chemistry, 2018, 56(9): 2785-2793. [CrossRef] [MathSciNet] [Google Scholar]
  13. Shi L J, Zhang H P. Forcing and anti-forcing numbers of (3,6)-fullerenes[J]. MATCH Commun Math Comput Chem, 2016, 76(3): 597-614. [MathSciNet] [Google Scholar]
  14. John P E, Sachs H. Spectra of toroidal graphs[J]. Discrete Mathematics, 2009, 309(9): 2663-2681. [CrossRef] [MathSciNet] [Google Scholar]
  15. Goodey P R. A class of Hamiltonian polytopes[J]. Journal of Graph Theory, 1977, 1(2): 181-185. [CrossRef] [MathSciNet] [Google Scholar]
  16. Grünbaum B, Motzkin T S. The number of hexagons and the simplicity of geodesics on certain polyhedra[J]. Canadian Journal of Mathematics, 1963, 15: 744-751. [CrossRef] [Google Scholar]
  17. Bondy J A, Murty U S R. Graph Theory[M]. Berlin: Springer-Verlag, 2008. [CrossRef] [Google Scholar]
  18. Brualdi R A. Introductory Combinatorics[M]. New York: North-Holland Press, 2009. [Google Scholar]
  19. Diestel R. Graph Theory[M]. New York: Springer-Verlag, 2005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.