Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 4, August 2023
Page(s) 351 - 358
DOI https://doi.org/10.1051/wujns/2023284351
Published online 06 September 2023
  1. Panneerselvam R, Liu G K, Wang Y H, et al. Surface-enhanced Raman spectroscopy: Bottlenecks and future directions[J]. Chemical Communications, 2018, 54(1): 10-25. [CrossRef] [Google Scholar]
  2. Alvarez-Puebla R A, Dos Santos D SJr, Aroca R F. Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols[J]. Analyst, 2004, 129(12): 1251-1256. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  3. Pilot R, Signorini R, Durante C, et al. A review on surface-enhanced Raman scattering[J]. Biosensors, 2019, 9(2): 57. [CrossRef] [PubMed] [Google Scholar]
  4. Guerrini L, Krpetić Ž, van Lierop D, et al. Direct surface-enhanced Raman scattering analysis of DNA duplexes[J]. Angewandte Chemie, 2015, 127(4): 1160-1164. [NASA ADS] [CrossRef] [Google Scholar]
  5. Ong T T X, Blanch E W, Jones O A H. Surface enhanced Raman spectroscopy in environmental analysis, monitoring and assessment[J]. Science of the Total Environment, 2020, 720: 137601. [NASA ADS] [CrossRef] [Google Scholar]
  6. Jin H Z, Lu Q P, Chen X D, et al. The use of Raman spectroscopy in food processes: A review[J]. Applied Spectroscopy Reviews, 2016, 51(1): 12-22. [NASA ADS] [CrossRef] [Google Scholar]
  7. Inaba H, Kobayasi T. Laser-Raman radar—Laser-Raman scattering methods for remote detection and analysis of atmospheric pollution[J]. Opto-Electronics, 1972, 4(2): 101-123. [CrossRef] [Google Scholar]
  8. Hussain A, Sun D W, Pu H B. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS[J]. Food Chemistry, 2020, 317: 126429. [CrossRef] [PubMed] [Google Scholar]
  9. Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced non-linear Raman scattering at the single-molecule level[J]. Chemical Physics, 1999, 247(1): 155-162. [NASA ADS] [CrossRef] [Google Scholar]
  10. Wilson R, Bowden S A, Parnell J, et al. Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics[J]. Analytical Chemistry, 2010, 82(5): 2119-2123. [CrossRef] [PubMed] [Google Scholar]
  11. Madzharova F, Heiner Z, Kneipp J. Surface enhanced hyper Raman scattering (SEHRS) and its applications[J]. Chemical Society Reviews, 2017, 46(13): 3980-3999. [CrossRef] [PubMed] [Google Scholar]
  12. Itoh T, Yoshida K, Biju V, et al. Second enhancement in surface-enhanced resonance Raman scattering revealed by an analysis of anti-Stokes and Stokes Raman spectra[J]. Physical Review B, 2007, 76(8): 085405. [CrossRef] [Google Scholar]
  13. Tolles W M, Nibler J W, McDonald J R, et al. A review of the theory and application of coherent anti-stokes Raman spectroscopy (CARS)[J]. Applied Spectroscopy, 1977, 31(4): 253-271. [NASA ADS] [CrossRef] [Google Scholar]
  14. Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals[J]. The Journal of Chemical Physics, 1978, 69(9): 4159-4161. [NASA ADS] [CrossRef] [Google Scholar]
  15. Wang D S, Kerker M. Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids [J]. Physical Review B, 1981, 24: 1777-1790. [NASA ADS] [CrossRef] [Google Scholar]
  16. Aiga N, Takeuchi S. Single-molecule Raman spectroscopy of a pentacene derivative adsorbed on the nonflat surface of a metallic tip[J]. The Journal of Physical Chemistry C, 2022, 126(38): 16227-16235. [CrossRef] [Google Scholar]
  17. Dutta Roy S, Ghosh M, Chowdhury J. Near-field response on the far-field wavelength-scanned surface-enhanced Raman spectroscopic study of methylene blue adsorbed on gold nanocolloidal particles[J]. The Journal of Physical Chemistry C, 2018, 122(20): 10981-10991. [CrossRef] [Google Scholar]
  18. Marques F C, Oliveira G P, Teixeira R A R, et al. Characterization of 11-mercaptoundecanoic and 3-mercaptopropionic acids adsorbed on silver by surface-enhanced Raman scattering[J]. Vibrational Spectroscopy, 2018, 98: 139-144. [CrossRef] [Google Scholar]
  19. Nikoobakht B, Wang J P, El-Sayed M A. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: Off-surface plasmon resonance condition[J]. Chemical Physics Letters, 2002, 366(1/2): 17-23. [NASA ADS] [CrossRef] [Google Scholar]
  20. Kumar J, Thomas K G. Surface-enhanced Raman spectroscopy: Investigations at the nanorod edges and dimer junctions[J]. The Journal of Physical Chemistry Letters, 2011, 2(6): 610-615. [CrossRef] [Google Scholar]
  21. Talley C E, Jackson J B, Oubre C, et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates[J]. Nano Letters, 2005, 5(8): 1569-1574. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  22. Chirumamilla M, Toma A, Gopalakrishnan A, et al. 3D nanostar dimers with a sub-10-nm gap for single-/ few-molecule surface-enhanced Raman scattering[J]. Advanced Materials, 2014, 26(15): 2353-2358. [NASA ADS] [CrossRef] [Google Scholar]
  23. Kang H S, Zhao W Q, Zhou T, et al. Toroidal dipole-modulated dipole-dipole double-resonance in colloidal gold rod-cup nanocrystals for improved SERS and second-harmonic generation[J]. Nano Research, 2022, 15(10): 9461-9469. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  24. Wustholz K L, Henry A I, McMahon J M, et al. Structure–activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2010, 132(31): 10903-10910. [CrossRef] [PubMed] [Google Scholar]
  25. Luo Y, Aubry A, Pendry J B. Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: A transformation optics approach[J]. Physical Review B, 2011, 83(15): 155422. [NASA ADS] [CrossRef] [Google Scholar]
  26. Khlebtsov B, Khlebtsov N. Surface-enhanced Raman scattering-based lateral-flow immunoassay[J]. Nanomaterials, 2020, 10(11): 2228. [CrossRef] [PubMed] [Google Scholar]
  27. Lin M H, Sun L, Kong F B, et al. Rapid detection of paraquat residues in green tea using surface-enhanced Raman spectroscopy (SERS) coupled with gold nanostars[J]. Food Control, 2021, 130: 108280. [CrossRef] [Google Scholar]
  28. Nalbant Esenturk E, Hight Walker A R. Surface-enhanced Raman scattering spectroscopy via gold nanostars[J]. Journal of Raman Spectroscopy, 2009, 40(1): 86-91. [NASA ADS] [CrossRef] [Google Scholar]
  29. Shirzaditabar F, Saliminasab M, Arghavani Nia B. Triple plasmon resonance of bimetal nanoshell[J]. Physics of Plasmas, 2014, 21(7): 072102. [CrossRef] [PubMed] [Google Scholar]
  30. He Z, Zhu J, Li X, et al. Surface etching-dependent geometry tailoring and multi-spectral information of Au@AuAg yolk-shell nanostructure with asymmetrical pyramidal core: The application in Co2+ determination[J]. Journal of Colloid and Interface Science, 2022, 625: 340-353. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  31. Liu P, Chen H J, Wang H, et al. Fabrication of Si/Au core/shell nanoplasmonic structures with ultrasensitive surface-enhanced Raman scattering for monolayer molecule detection[J]. The Journal of Physical Chemistry C, 2015, 119(2): 1234-1246. [CrossRef] [MathSciNet] [Google Scholar]
  32. Dai L W, Song L P, Huang Y J, et al. Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in the near-infrared region and high performance surface-enhanced Raman scattering[J]. Langmuir, 2017, 33(22): 5378-5384. [CrossRef] [PubMed] [Google Scholar]
  33. Ma L A, Chen Y L, Yang D J, et al. Gap-dependent plasmon coupling in Au/AgAu hybrids for improved SERS performance[J]. The Journal of Physical Chemistry C, 2020, 124(46): 25473-25479. [CrossRef] [Google Scholar]
  34. Yilmaz A, Yilmaz M. Bimetallic core–shell nanoparticles of gold and silver via bioinspired polydopamine layer as surface-enhanced Raman spectroscopy (SERS) platform[J]. Nanomaterials, 2020, 10(4): 688. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  35. Li W Y, Camargo P H C, Lu X M, et al. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering[J]. Nano Letters, 2009, 9(1): 485-490. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  36. Lin Y, Zhang J, Zhang Y L, et al. Multi-effect enhanced Raman scattering based on Au/ZnO nanorods structures[J]. Nanomaterials, 2022, 12(21): 3785. [CrossRef] [PubMed] [Google Scholar]
  37. Ding S J, Ma L, Feng J R, et al. Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances[J]. Nano Research, 2022, 15(3): 2715-2721. [NASA ADS] [CrossRef] [Google Scholar]
  38. van der Hoeven J E S, Deng T S, Albrecht W, et al. Structural control over bimetallic core-shell nanorods for surface-enhanced Raman spectroscopy[J]. ACS Omega, 2021, 6(10): 7034-7046. [CrossRef] [PubMed] [Google Scholar]
  39. Tian W H, Wu K Y, Cheng X L, et al. Preparation and analysis of the Au-SiO2 multi-layer nanospheres as high SERS resolution substrate[C]//Optical Sensors and Biophotonics. Washington D C: Optica Publishing Group, 2011: 83110K. [Google Scholar]
  40. Ma J M, Liu X F, Wang R W, et al. Bimetallic core-shell nanostars with tunable surface plasmon resonance for surface-enhanced Raman scattering[J]. ACS Applied Nano Materials, 2020, 3(11): 10885-10894. [CrossRef] [Google Scholar]
  41. Metiu H. Surface enhanced spectroscopy[J]. Progress in Surface Science, 1984, 17(3/4): 153-320. [NASA ADS] [CrossRef] [Google Scholar]
  42. Tsang J C, Kirtley J R, Bradley J A. Surface-enhanced Raman spectroscopy and surface plasmons[J]. Physical Review Letters, 1979, 43(11): 772-775. [NASA ADS] [CrossRef] [Google Scholar]
  43. Hamon C, Liz-Marzán L M. Colloidal design of plasmonic sensors based on surface enhanced Raman scattering[J]. Journal of Colloid and Interface Science, 2018, 512: 834-843. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  44. Alvarez-Puebla R A, Ross D J, Nazri G A, et al. Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance[J]. Langmuir, 2005, 21(23): 10504-10508. [CrossRef] [PubMed] [Google Scholar]
  45. Chen S Q, Han L, Schülzgen A, et al. Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure[J]. Optics Express, 2008, 16(17): 13016. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  46. Lee J, Hua B, Park S, et al. Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy[J]. Nanoscale, 2014, 6(1): 616-623. [CrossRef] [PubMed] [Google Scholar]
  47. Zhao Z R, Zhang S, Jing R P, et al. Synthesis of magnetic plasmonic Au/AgAu heterostructures with tunable gap width for enhancing Raman performance[J]. Plasmonics, 2023, 18: 283-289. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.