Open Access
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 6, December 2023
Page(s) 461 - 473
Published online 15 January 2024
  1. Rodríguez-Esparza E, Zanella-Calzada L A, Oliva D, et al. An efficient Harris hawks-inspired image segmentation method[J]. Expert Systems with Applications, 2020, 155: 113428. [CrossRef] [Google Scholar]
  2. Jia L, Zhao X Q. An improved particle swarm optimization (PSO) optimized integral separation PID and its application on central position control system[J]. IEEE Sensors Journal, 2019, 19(16): 7064-7071. [NASA ADS] [CrossRef] [Google Scholar]
  3. Zeng G H, Fu X W, Liu J, et al. PMSM vector control optimization based on fractional PIλ of rotational speed outer loop of dragonfly algorithm[J]. Wuhan University Journal of Natural Sciences, 2021, 26(5):429-436. [Google Scholar]
  4. Zhang H R, Yang Y, Zhang Y, et al. A combined model based on SSA, neural networks, and LSSVM for short-term electric load and price forecasting[J]. Neural Computing and Applications, 2021, 33(2): 773-788. [CrossRef] [Google Scholar]
  5. Liao H F, Zeng G H, Huang B, et al. Optimal control virtual inertia of optical storage microgrid based on improved sailfish algorithm[J]. Wuhan University Journal of Natural Sciences, 2022, 27(3):218-230. [CrossRef] [EDP Sciences] [Google Scholar]
  6. Kennedy J, Eberhart R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942-1948. [Google Scholar]
  7. Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. [CrossRef] [Google Scholar]
  8. Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. [CrossRef] [Google Scholar]
  9. Arora S, Singh S. Butterfly optimization algorithm: A novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734. [CrossRef] [Google Scholar]
  10. Das S, Biswas A, Dasgupta S, et al. Bacterial foraging optimization algorithm: Theoretical foundations, analysis, and applications[C]// Foundations of Computational Intelligence Volume 3: Global Optimization. Berlin: Springer-Verlag, 2009: 23-55. [Google Scholar]
  11. Heidari A A, Mirjalili S, Faris H, et al. Harris Hawks optimization: Algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. [CrossRef] [Google Scholar]
  12. Xue J K, Shen B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. [CrossRef] [Google Scholar]
  13. Guo Y X, Liu S, Gao W X, et al. Improved Harris Hawks optimization algorithm with multiple strategies [J]. Microelectronics and Computers, 2021, 38(7): 18-24(Ch). [Google Scholar]
  14. Tang A D, Han T, Xu D W, et al. Chaotic elite Harris Hawks optimization algorithm[J]. Journal of Computer Applications, 2021,41(8): 2265-2272(Ch). [Google Scholar]
  15. Li C Y, Li J, Chen H L, et al. Enhanced Harris Hawks optimization with multi-strategy for global optimization tasks[J]. Expert Systems with Applications, 2021, 185: 115499. [CrossRef] [Google Scholar]
  16. Liu X L, Liang T Y. Harris Hawk optimization algorithm based on square neighborhood and random array[J]. Control and Decision, 2022, 37(10): 2467-2476(Ch). [Google Scholar]
  17. Zhang Y, Zhou X Z, Shi P C. Modified Harris Hawks optimization algorithm for global optimization problems[J]. Arabian Journal for Science and Engineering, 2020, 45(12): 10949-10974. [CrossRef] [Google Scholar]
  18. Yin D X, Zhang L N, Zhang D M, et al. Harris Hawks optimization based on chaotic lens imaging learning and its application[J]. Chinese Journal of Sensors and Actuator, 2021, 34 (11): 1463-1474(Ch). [Google Scholar]
  19. Chen Q, Li K S. Based on random tracelessness σ modified HHO algorithm for mutation and its application[J]. Computer Application Research, 2022(5): 1-9 (Ch). [Google Scholar]
  20. Zhao S J, Gao L F, Yu D M, et al. Improved HHO Algorithm Integrating Periodic Energy Declining and Newton Local Enhancement[J]. Control and Decision, 2021, 36(3): 629-636(Ch). [Google Scholar]
  21. Xie L, Han T, Zhou H, et al. Tuna swarm optimization: A novel swarm-based metaheuristic algorithm for global optimization[J]. Computational Intelligence and Neuroscience, 2021, 2021: 9210050. [PubMed] [Google Scholar]
  22. Storn R, Price K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11: 341-359. [CrossRef] [Google Scholar]
  23. Chen G, Zeng G H, Huang B, et al. HHO algorithm integrating mutually beneficial symbiosis and lens imaging learning[J]. Computer Engineering and Application, 2022, 58(10): 76-86(Ch). [Google Scholar]
  24. Nie C F. Harris Hawk optimization algorithm combining golden sine and random walk[J]. Intelligent Computer and Application, 2021, 11(7): 113-119+123(Ch). [Google Scholar]
  25. Zhang S, Wang J J, Li A L, et al. Harris Hawk optimization algorithm integrating normal clouds and dynamic perturbations [J]. Small Microcomputer System, 2022: 1-11(Ch). [Google Scholar]
  26. Guo Y X, Liu S, Gao W X, et al. The HHO algorithm for elite reverse learning and golden sine optimization[J]. Computer Engineering and Application, 2021(1): 8-12Ch). □ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.