Open Access
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 6, December 2023
Page(s) 474 - 482
Published online 15 January 2024
  1. Le T H M, Chen H, Babar M A. Deep learning for source code modeling and generation: Models, applications, and challenges [J]. ACM Computing Surveys (CSUR), 2020, 53(3): 1-38. [Google Scholar]
  2. Wang C J, Cao Z X, Yu C L, et al. Nonlinear program construction and verification method based on partition recursion and Morgan's refinement rules[J]. Wuhan University Journal of Natural Sciences, 2023, 28(3): 246-255. [CrossRef] [EDP Sciences] [Google Scholar]
  3. Zuo Z K, Hu Y, Huang Qing, et al. Automatic algorithm programming model based on the improved Morgan's refinement calculus[J]. Wuhan University Journal of Natural Sciences, 2022, 27(5): 405-414. [CrossRef] [EDP Sciences] [Google Scholar]
  4. Zuo Z K, Huang Z P, Fang Y, et al. A unified strategy for formal derivation and proof of binary tree nonrecursive algorithms[J]. Wuhan University Journal of Natural Sciences, 2022, 27(5): 415-423. [CrossRef] [EDP Sciences] [Google Scholar]
  5. You Z, Hu H W, Wang Y T, et al. Improved hybrid collaborative filtering algorithm based on spark platform[J]. Wuhan University Journal of Natural Sciences, 2023, 28(5): 451-460. [CrossRef] [EDP Sciences] [Google Scholar]
  6. Xia X, Bao L F, Lo D, et al. Measuring program comprehension: A large-scale field study with professionals[J]. IEEE Transactions on Software Engineering, 2018, 44(10): 951-976. [CrossRef] [MathSciNet] [Google Scholar]
  7. Iyer S, Konstas I, Cheung A, et al. Summarizing source code using a neural attention model[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: Association for Computational Linguistics, 2016: 2073-2083. [Google Scholar]
  8. Liang Y D, Zhu K. Automatic generation of text descriptive comments for code blocks[EB/OL]. [2018-08-21]. [Google Scholar]
  9. Hu X, Li G, Xia X, et al. Deep code comment generation[C]//Proceedings of the 26th Conference on Program Comprehension. New York: ACM, 2018: 200-210. [Google Scholar]
  10. Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. New York: ACM, 2014: 3104-3112. [Google Scholar]
  11. Luong M T, Pham H, Manning C D. Effective approaches to attention-based neural machine translation [EB/OL]. [2015-06-25]. [Google Scholar]
  12. Hochreiter S, Schmidhuber J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. [CrossRef] [Google Scholar]
  13. Wan Y, Zhao Z, Yang M, et al. Improving automatic source code summarization via deep reinforcement learning[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. New York: ACM, 2018: 397-407. [Google Scholar]
  14. Kaelbling L P, Littman M L, Moore A W. Reinforcement learning: A survey[J]. Journal of Artificial Intelligence Research, 1996, 4: 237-285. [Google Scholar]
  15. Zhang J, Wang X, Zhang H Y, et al. Retrieval-based neural source code summarization[C]//Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. New York: ACM, 2020: 1385-1397. [Google Scholar]
  16. Liu S Q, Chen Y, Xie X F, et al. Retrieval-augmented generation for code summarization via hybrid GNN [EB/OL]. [2020-11-15]. [Google Scholar]
  17. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010. [Google Scholar]
  18. Ahmad W U, Chakraborty S, Ray B, et al. A transformer-based approach for source code summarization [EB/OL]. [2020-10-23]. [Google Scholar]
  19. Yang Z, Keung J, Yu X, et al. A multi-modal transformer-based code summarization approach for smart contracts[C]//2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC). New York: IEEE, 2021: 1-12. [Google Scholar]
  20. See A, Liu P J, Manning C D. Get to the point: Summarization with pointer-generator networks [EB/OL]. [2017-11-15]. [Google Scholar]
  21. Shaw P, Uszkoreit J, Vaswani A. Self-attention with relative position representations [EB/OL]. [2018-02-24]. [Google Scholar]
  22. Wu H Q, Zhao H, Zhang M. Code summarization with structure-induced transformer [EB/OL]. [2020-11-28]. [Google Scholar]
  23. Feng Z Y, Guo D Y, Tang D Y, et al. CodeBERT: A pre-trained model for programming and natural languages[EB/OL]. [2021-12-05]. [Google Scholar]
  24. Wang Y, Wang W S, Joty S, et al. CodeT5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation[EB/OL]. [2021-12-18]. [Google Scholar]
  25. Liu P F, Yuan W Z, Fu J L, et al. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing[J]. ACM Computing Surveys, 2023, 55(9): 1-35. [Google Scholar]
  26. Radford A, Narasimhan K. Improving language understanding by generative pre-training [EB/OL]. [2021-12-18]. [Google Scholar]
  27. Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2018-11-06]. [Google Scholar]
  28. Liu Y H, Ott M, Goyal N, et al. RoBERTa: A robustly optimized BERT pretraining approach[EB/OL]. [2019-12-06]. [Google Scholar]
  29. Husain H, Wu H H, Gazit T, et al. CodeSearchNet challenge: Evaluating the state of semantic code search[EB/OL]. [2019-12-06]. [Google Scholar]
  30. Wan Y, Zhao W, Zhang H Y, et al. What do they capture? : A structural analysis of pre-trained language models for source code[C]//Proceedings of the 44th International Conference on Software Engineering. New York: ACM, 2022: 2377-2388. [Google Scholar]
  31. Yuan X E, Lin G J, Tai Y H, et al. Deep neural embedding for software vulnerability discovery: Comparison and optimization[J]. Security and Communication Networks, 2022, 2022: 1-12. [Google Scholar]
  32. Karmakar A, Robbes R. What do pre-trained code models know about code? [C]//2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). New York: IEEE, 2022: 1332-1336. [Google Scholar]
  33. Wang C Z, Yang Y H, Gao C Y, et al. No more fine-tuning? An experimental evaluation of prompt tuning in code intelligence[C]//Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2022: 382-394. [Google Scholar]
  34. Han X, Zhang Z Y, Ding N, et al. Pre-trained models: Past, present and future [J]. AI Open, 2021, 2: 225-250. [CrossRef] [Google Scholar]
  35. Bisht M, Gupta R. Fine-tuned pre-trained model for script recognition [J]. International Journal of Mathematical, Engineering and Management Sciences, 2021, 6(5): 1297-1314. [CrossRef] [Google Scholar]
  36. Liu B Y, Cai Y F, Guo Y, et al. TransTailor: Pruning the pre-trained model for improved transfer learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(10): 8627-8634. [CrossRef] [Google Scholar]
  37. Colin R, Noam S, Adam R, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research, 2020, 21(1): 5485-5551. [Google Scholar]
  38. Papineni K, Roukos S, Ward T, et al. BLEU: A method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics — ACL '02. Stroudsburg: Association for Computational Linguistics, 2001: 311-318. [Google Scholar]
  39. Banerjee S, Lavie A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments[C]//Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. Stroudsburg: Association for Computational Linguistics, 2005: 65-72. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.