Open Access
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 1, February 2024
Page(s) 74 - 84
Published online 15 March 2024
  1. Mok T S, Wu Y L, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma[J]. N Engl J Med, 2009, 361(10): 947-957. [CrossRef] [PubMed] [Google Scholar]
  2. Qin S K, Li Q, Gu S Z, et al. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial[J]. The Lancet Gastroenterology & Hepatology, 2021, 6(7): 559-568. [CrossRef] [Google Scholar]
  3. Zhao Q W, Feng H R, Yang Z Y, et al. The central role of a two-way positive feedback pathway in molecular targeted therapies-mediated pyroptosis in anaplastic thyroid cancer[J]. Clinical and Translational Medicine, 2022, 12(2): e727. [CrossRef] [Google Scholar]
  4. Kaestner K H, Knochel W, Martinez D E. Unified nomenclature for the winged helix/forkhead transcription factors[J]. Genes & Development, 2000, 14(2): 142-146. [Google Scholar]
  5. Ramezani A, Nikravesh H, Faghihloo E. The roles of FOX proteins in virus-associated cancers[J]. Journal of Cellular Physiology, 2019, 234(4): 3347-3361. [Google Scholar]
  6. Landgren H, Carlsson P. FoxJ3, a novel mammalian forkhead gene expressed in neuroectoderm, neural crest, and myotome[J]. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 2004, 231(2): 396-401. [CrossRef] [PubMed] [Google Scholar]
  7. Yong W M, Deng S J, Tan Y F, et al. Circular RNA circSLC8A1 inhibits the proliferation and invasion of non-small cell lung cancer cells through targeting the miR-106b-5p/FOXJ3 axis[J]. Cell Cycle, 2021, 20(24): 2597-2606. [CrossRef] [PubMed] [Google Scholar]
  8. Jin J P, Zhou S S, Li C F, et al. MiR-517a-3p accelerates lung cancer cell proliferation and invasion through inhibiting FOXJ3 expression[J]. Life Sciences, 2014, 108(1): 48-53. [CrossRef] [PubMed] [Google Scholar]
  9. Zhang J Y, Su X P, Li Y N, et al. MicroRNA-425-5p promotes the development of prostate cancer via targeting forkhead box J3[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(2): 547-554. [PubMed] [Google Scholar]
  10. Zhang B W, Min S N, Guo Q, et al. 7SK acts as an anti-tumor factor in tongue squamous cell carcinoma[J]. Frontiers in Genetics, 2021, 12: 642969. [CrossRef] [PubMed] [Google Scholar]
  11. Li T W, Fu J X, Zeng Z X, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Research, 2020, 48(W1): W509-W514. [CrossRef] [PubMed] [Google Scholar]
  12. Shen W T, Song Z G, Zhong X, et al. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform[J]. iMeta, 2022, 1(3): e36. [CrossRef] [Google Scholar]
  13. Chandrashekar D S, Bashel B, Balasubramanya S A H, et al. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses[J]. Neoplasia, 2017, 19(8): 649-658. [CrossRef] [PubMed] [Google Scholar]
  14. Cerami E, Gao J J, Dogrusoz U, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data[J]. Cancer Discovery, 2012, 2(5): 401-404. [CrossRef] [PubMed] [Google Scholar]
  15. Tang Z F, Kang B X, Li C W, et al. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis[J]. Nucleic Acids Research, 2019, 47(W1): W556-W560. [CrossRef] [PubMed] [Google Scholar]
  16. Yuan H T, Yan M, Zhang G X, et al. CancerSEA: A cancer single-cell state atlas[J]. Nucleic Acids Research, 2019, 47(D1): D900-D908. [CrossRef] [PubMed] [Google Scholar]
  17. Szklarczyk D, Gable A L, Nastou K C, et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Research, 2021, 49(D1): D605-D612. [CrossRef] [PubMed] [Google Scholar]
  18. Oughtred R, Rust J, Chang C, et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions[J]. Protein Science: A Publication of the Protein Society, 2021, 30(1): 187-200. [CrossRef] [PubMed] [Google Scholar]
  19. Zhou Y Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nature Communications, 2019, 10: 1523. [Google Scholar]
  20. Lehmann O J, Sowden J C, Carlsson P, et al. Fox's in development and disease[J]. Trends in Genetics, 2003, 19(6): 339-344. [CrossRef] [PubMed] [Google Scholar]
  21. Alexander M S, Shi X Z, Voelker K A, et al. Foxj3 transcriptionally activates Mef2c and regulates adult skeletal muscle fiber type identity[J]. Developmental Biology, 2010, 337(2): 396-404. [CrossRef] [PubMed] [Google Scholar]
  22. Li J H, Ma Y M, Yuan W L, et al. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes[J]. Insect Biochemistry and Molecular Biology, 2017, 88: 1-11. [CrossRef] [PubMed] [Google Scholar]
  23. Welzel F, Kaehler C, Isau M, et al. FOX-2 dependent splicing of ataxin-2 transcript is affected by ataxin-1 overexpression[J]. PLoS One, 2012, 7(5): e37985. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  24. Zong Y P, Miao Y M, Li W C, et al. Combination of FOXD1 and Plk2: A novel biomarker for predicting unfavourable prognosis of colorectal cancer[J]. Journal of Cellular and Molecular Medicine, 2022, 26(12): 3471-3482. [Google Scholar]
  25. Zheng X J, Li W, Yi J, et al. EZH2 regulates expression of FOXC1 by mediating H3K27me3 in breast cancers[J]. Acta Pharmacologica Sinica, 2021, 42: 1171-1179. [Google Scholar]
  26. Fan Y B, Ding Z, Yang Z L, et al. Expression and clinical significance of FOXE1 in papillary thyroid carcinoma[J]. Molecular Medicine Reports, 2013, 8(1): 123-127. [CrossRef] [PubMed] [Google Scholar]
  27. Feng Y C, Li S J, Zhang R, et al. FOXM1 as a prognostic biomarker promotes endometrial cancer progression via transactivation of SLC27A2 expression[J]. International Journal of Clinical and Experimental Pathology, 2018, 11(8): 3846-3857. [PubMed] [Google Scholar]
  28. Paydar P, Asadikaram G, Nejad H Z, et al. Epigenetic modulation of BRCA-1 and MGMT genes, and histones H4 and H3 are associated with breast tumors[J]. Journal of Cellular Biochemistry, 2019, 120(8): 13726-13736. [Google Scholar]
  29. Tani M, Ito J, Nishioka M, et al. Correlation between histone acetylation and expression of the MYO18B gene in human lung cancer cells[J]. Genes, Chromosomes & Cancer, 2004, 40(2): 146-151. [Google Scholar]
  30. Chen G, Hu M, Wang X C, et al. Effects of RXRα on proliferation and apoptosis of pancreatic cancer cells through TGF-β/Smad signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23: 4723-4729. [PubMed] [Google Scholar]
  31. Cheng Y H, Heng X Y, Feng F. G-protein coupled receptor 34 promotes gliomagenesis by inducing proliferation and malignant phenotype via TGF-β/Smad signaling pathway[J]. Technology in Cancer Research & Treatment, 2022, 21: 15330338221105733. [PubMed] [Google Scholar]
  32. Orvis T, Hepperla A, Walter V, et al. BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization[J]. Cancer Research, 2014, 74(22): 6486-6498. [CrossRef] [PubMed] [Google Scholar]
  33. Mancini M, Papon L, Mangé A, et al. HP1s modulate the S-Adenosyl Methionine synthesis pathway in liver cancer cells[J]. The Biochemical Journal, 2020, 477(5): 1033-1047. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.