Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 1, February 2024
Page(s) 67 - 73
DOI https://doi.org/10.1051/wujns/2024291067
Published online 15 March 2024
  1. Röhlsberger R, Wille H C, Schlage K, et al. Electromagnetically induced transparency with resonant nuclei in a cavity[J]. Nature, 2012, 482(7384): 199-203. [CrossRef] [PubMed] [Google Scholar]
  2. Boller K J, Imamoğlu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991, 66(20): 2593-2596. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  3. Harris S E, Field J E, Imamoğlu A. Nonlinear optical processes using electromagnetically induced transparency[J]. Physical Review Letters, 1990, 64(10): 1107-1110. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  4. Weis S, Rivière R, Deléglise S, et al. Optomechanically induced transparency[J]. Science, 2010, 330(6010): 1520-1523. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  5. Hao H, Kuzyk M C, Ren J J, et al. Electromagnetically and optomechanically induced transparency and amplification in an atom-assisted cavity optomechanical system[J]. Physical Review A, 2019, 100(2): 023820. [CrossRef] [Google Scholar]
  6. Jiang Y J, Zhao X D, Xia S Q, et al. Nonlinear optomechanically induced transparency in a spinning Kerr resonator[J]. Chinese Physics Letters, 2022, 39(12): 124202. [NASA ADS] [CrossRef] [Google Scholar]
  7. Qin G Q, Yang H, Mao X, et al. Manipulation of optomechanically induced transparency and absorption by indirectly coupling to an auxiliary cavity mode[J]. Optics Express, 2020, 28(1): 580. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  8. Xiong H, Wu Y. Fundamentals and applications of optomechanically induced transparency[J]. Applied Physics Reviews, 2018, 5(3): 031305. [NASA ADS] [CrossRef] [Google Scholar]
  9. Qin H Y, Ding M, Yin Y H. Induced transparency with optical cavities[J]. Advanced Photonics Research, 2020, 1(1): 2000009. [Google Scholar]
  10. Li G Y, Jiang X S, Hua S Y, et al. Optomechanically tuned electromagnetically induced transparency-like effect in coupled optical microcavities[J]. Applied Physics Letters, 2016, 109(26): 261106. [NASA ADS] [CrossRef] [Google Scholar]
  11. Kuo P S, Bravo-Abad J, Solomon G S. Second-harmonic generation using-quasi-phasematching in a GaAs whispering-gallery-mode microcavity[J]. Nature Communications, 2014, 5: 3109. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  12. Rivoire K, Buckley S, Hatami F, et al. Second harmonic generation in GaP photonic crystal waveguides[C]//IEEE Photonic Society 24th Annual Meeting. New York: IEEE, 2011: 381-382. [Google Scholar]
  13. Zhou Y H, Zhang S S, Shen H Z, et al. Second-order nonlinearity induced transparency[J]. Optics Letters, 2017, 42(7): 1289. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  14. Aldana S, Bruder C, Nunnenkamp A. Equivalence between an optomechanical system and a Kerr medium[J]. Physical Review A, 2013, 88(4): 043826. [CrossRef] [PubMed] [Google Scholar]
  15. Xiong W, Jin D Y, Qiu Y Y, et al. Cross-Kerr effect on an optomechanical system[J]. Physical Review A, 2016, 93(2): 023844. [CrossRef] [Google Scholar]
  16. Kumar T, Bhattacherjee A B, ManMohan. Dynamics of a movable micromirror in a nonlinear optical cavity[J]. Physical Review A, 2010, 81: 013835. [CrossRef] [PubMed] [Google Scholar]
  17. Zhang J S, Zeng W, Chen A X. Effects of cross-Kerr coupling and parametric nonlinearity on normal mode splitting, cooling, and entanglement in optomechanical systems[J]. Quantum Information Processing, 2017, 16(6): 163. [NASA ADS] [CrossRef] [Google Scholar]
  18. Jiao Y F, Lu T X, Jing H. Optomechanical second-order sidebands and group delays in a Kerr resonator[J]. Physical Review A, 2018, 97: 013843. [CrossRef] [Google Scholar]
  19. Walls D F, Milburn G J. Quantum Optics[M]. Berlin, Heidelberg: Springer-Verlag, 2008. [CrossRef] [Google Scholar]
  20. Zhang J Q, Li Y, Feng M, et al. Precision measurement of electrical charge with optomechanically induced transparency[J]. Physical Review A, 2012, 86(5): 053806. [CrossRef] [PubMed] [Google Scholar]
  21. Agarwal G S, Huang S M. Electromagnetically induced transparency in mechanical effects of light[J]. Physical Review A, 2010, 81(4): 041803. [Google Scholar]
  22. Ramezanpour S, Bogdanov A. Tuning exceptional points with Kerr nonlinearity[J]. Physical Review A, 2021, 103(4): 043510. [CrossRef] [PubMed] [Google Scholar]
  23. Sheng J T, Yang X H, Wu H B, et al. Modified self-Kerr-nonlinearity in a four-level N-type atomic system[J]. Physical Review A, 2011, 84(5): 053820. [CrossRef] [Google Scholar]
  24. Wang H, Goorskey D, Xiao M. Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system[J]. Physical Review Letters, 2001, 87(7): 073601. [CrossRef] [PubMed] [Google Scholar]
  25. Wang H, Goorskey D J, Xiao M. Atomic coherence induced Kerr nonlinearity enhancement in Rb vapour[J]. Journal of Modern Optics, 2002, 49(3/4): 335-347. [Google Scholar]
  26. Khoa D X, Bang N H, Le Thuy An N, et al. An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening[J]. Chinese Physics B, 2022, 31(2): 024201. [NASA ADS] [CrossRef] [Google Scholar]
  27. Liao Q H, Wang X Q, He G Q, et al. Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system[J]. Chinese Physics B, 2021, 30(9): 094205. [NASA ADS] [CrossRef] [Google Scholar]
  28. Qin X T, Jiang Y, Ma W X, et al. Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice[J]. Chinese Physics B, 2022, 31(6): 064216. [NASA ADS] [CrossRef] [Google Scholar]
  29. Ferretti S, Gerace D. Single-photon nonlinear optics with Kerr-type nanostructured materials[J]. Physical Review B, 2012, 85(3): 033303. [CrossRef] [PubMed] [Google Scholar]
  30. Notomi M. Manipulating light with strongly modulated photonic crystals[J]. Reports on Progress in Physics, 2010, 73(9): 096501. [NASA ADS] [CrossRef] [Google Scholar]
  31. Galli M, Gerace D, Welna K, et al. Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities[J]. Optics Express, 2010, 18(25): 26613. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  32. Combrié S, De Rossi A, Tran Q V, et al. GaAs photonic crystal cavity with ultrahigh Q: Microwatt nonlinearity at 155 μm[J]. Optics Letters, 2008, 33(16): 1908. [CrossRef] [PubMed] [Google Scholar]
  33. Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2): 633-673. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.