Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 1, February 2024
Page(s) 59 - 66
DOI https://doi.org/10.1051/wujns/2024291059
Published online 15 March 2024
  1. Lean P, Holm E V, Bonavita M, et al. Continuous data assimilation for global numerical weather prediction[J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147(734): 273-288. [NASA ADS] [CrossRef] [Google Scholar]
  2. Ritchie H, Belair S, Bernier N B, et al. Recherche en prevision numerique contributions to numerical weather prediction[J]. Atmosphere-Ocean, 2022, 60(1): 35-64. [NASA ADS] [CrossRef] [Google Scholar]
  3. Schultz M G, Betancourt C, Gong B, et al. Can deep learning beat numerical weather prediction[J]. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences, 2021, 379(2146): 20200097-1 -20200097-22. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction[J]. Nature, 2015, 525(7567): 47-55. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  5. Dong Y Q, Zhou M R, Liu L Y, et al. Research on variational data assimilation based on improved parallel particle swarm optimization[J]. Journal of Central China Normal University (Natural Science Edition), 2021, 55(1): 46-51(Ch). [Google Scholar]
  6. Tian X J, Zhang H Q. A big data-driven nonlinear least squares four-dimensional variational data assimilation method: Theoretical formulation and conceptual evaluation[J]. Earth and Space Science, 2019, 6(8): 1430-1439. [NASA ADS] [CrossRef] [Google Scholar]
  7. Tamang S K, Ebtehaj A, Zou D M, et al. Regularized variational data assimilation for bias treatment using the Wasserstein metric[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 2332-2346. [NASA ADS] [CrossRef] [Google Scholar]
  8. Fablet R, Chapron B, Drumetz L, et al. Learning variational data assimilation models and solvers[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(10): e2021MS002572. [NASA ADS] [CrossRef] [Google Scholar]
  9. Ikuta Y, Fujita T, Ota Y, et al. Variational data assimilation system for operational regional models at Japan meteorological agency[J]. Journal of the Meteorological Society of Japan Ser II, 2021, 99(6): 1563-1592. [NASA ADS] [CrossRef] [Google Scholar]
  10. Dennis J M, Baker A H, Dobbins B, et al. Enabling efficient execution of a variational data assimilation application[J]. The International Journal of High Performance Computing Applications, 2023, 37(2): 101-114. [CrossRef] [Google Scholar]
  11. Kennedy J F, Eberhart R C, Shi Y H. Swarm Intelligence[M]. San Francisco: Morgan Kaufmann Publishers, 2001. [Google Scholar]
  12. Liu X Y, Yao Y X, Sui Q R. Maximum power point tracking of PV based on particle swarm optimization algorithm[J]. Laser Journal, 2016, 37(10): 129-132(Ch). [Google Scholar]
  13. Wang C S, Huo L M. Fault diagnosis of PV modules based on improved PSO and RBF optimization[J]. Laser Journal, 2019, 40(12): 159-162(Ch). [Google Scholar]
  14. Liu Y D, Zhou M R, Xie J Y, et al. Research on solar radiation simulation and prediction data assimilation: Particle swarm optimization scheme[J]. Acta Energiae Solaris Sinica, 2021, 42(4): 181-185(Ch). [Google Scholar]
  15. Li J Y, Tong Y L. Research on data assimilation in solar photovoltaics power generation based on improved PSO algorithm[J]. Journal of Central China Normal University (Natural Sciences), 2021, 55(4): 567-572(Ch). [Google Scholar]
  16. Zhang C X. Particle swarm optimization based on time varying constrict factor[J]. Computer Engineering and Applications, 2015, 51(23): 59-64(Ch). [Google Scholar]
  17. Zheng Q, Ye F H, Sha J X, et al. Effective application of particle-swarm optimization algorithm in variational data assimilation with discontinuous "on-off" switch[J]. Meteorological Science and Technology, 2013, 41(2): 286-293(Ch). [Google Scholar]
  18. Xu X, Li Y X, Wu Y. Particle swarm optimization algorithm based on diffusion mechanism with dual populations [J]. Computer Applications, 2010, 27(8): 2883-2885, 2898(Ch). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.