Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 1, February 2024
Page(s) 51 - 58
DOI https://doi.org/10.1051/wujns/2024291051
Published online 15 March 2024
  1. Hoi S C H, Wang J L, Zhao P L. Libol: A library for online learning algorithms[J]. Journal of Machine Learning Research, 2014, 15: 495- 499. [Google Scholar]
  2. Crammer K, Kulesza A, Dredze M. Adaptive regularization of weight vectors[J]. Machine Learning, 2013, 91(2): 155-187. [CrossRef] [MathSciNet] [Google Scholar]
  3. Wang J L, Zhao P L, Hoi S C H. Exact soft confidence-weighted learning[C]// Proceedings of the 29th International Conference on Machine Learning (ICML12). New York: ACM, 2012: 121-128. [Google Scholar]
  4. Siblini W, Kuntz P, Meyer F. A review on dimensionality reduction for multi-label classification[J]. IEEE Trans Knowl Data Eng, 2021, 33: 839-857. [Google Scholar]
  5. Gibaja E, Ventura S. A tutorial on multilabel learning[J]. ACM Computing Surveys, 2015, 47(3): 1-38. [CrossRef] [Google Scholar]
  6. Li P Y, Wang H L, Böhm C, et al. Online semi-supervised multi-label classification with label compression and local smooth regression[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2020, 20: 1359-1365. [Google Scholar]
  7. Liang S P, Liu Z, You D L, et al. Online multi-label stream feature selection based on neighborhood rough set with missing labels[J]. Pattern Analysis and Applications, 2022, 25(4): 1025-1039. [CrossRef] [Google Scholar]
  8. Gong K L, Zhai T T. An online active multi-label classification algorithm based on a hybrid label query strategy[C]//2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). New York: IEEE, 2021: 463-468. [Google Scholar]
  9. Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386-408. [CrossRef] [PubMed] [Google Scholar]
  10. Crammer K, Dekel O, Keshet J, et al. Online passive-aggressive algorithms[J]. Journal of Machine Learning Research, 2006, 7: 551-585. [MathSciNet] [Google Scholar]
  11. Liu J H, Lin Y J, Li Y W, et al. Online multi-label streaming feature selection based on neighborhood rough set[J]. Pattern Recognition, 2018, 84: 273-287. [NASA ADS] [CrossRef] [Google Scholar]
  12. Er M J, Venkatesan R, Wang N. An online universal classifier for binary, multi-class and multi-label classification[C]//2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). New York: IEEE, 2016: 3701-3706 . [Google Scholar]
  13. Chu H M, Huang K H, Lin H T. Dynamic principal projection for cost-sensitive online multi-label classification[J]. Machine Learning, 2019, 108(8/9): 1193-1230. [CrossRef] [MathSciNet] [Google Scholar]
  14. Guo X Z, Zhang Y W, Xu J H. Online multi-label passive aggressive active learning algorithm based on binary relevance[C]//Neural Information Processing. Cham: Springer-Verlag, 2017, 10: 256-266. [Google Scholar]
  15. Liu J, Guo Z W, Sun Z W, et al. Online multi-label feature selection on imbalanced data sets[C]//Communications in Computer and Information Science. Singapore: Springer-Verlag, 2018, 812: 165-174. [Google Scholar]
  16. Boulbazine S, Cabanes G, Matei B, et al. Online semi-supervised growing neural gas for multi-label data classification[C]//2018 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2018: 1-8. [Google Scholar]
  17. Huang S J, Zhou Z H. Multi-label learning by exploiting label correlations locally[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 26(1): 949-955. [CrossRef] [Google Scholar]
  18. Zhang M L, Zhang K. Multi-label learning by exploiting label dependency[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 999-1008. [Google Scholar]
  19. Zhang M L, Zhou Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837. [CrossRef] [Google Scholar]
  20. Zhang M L, Zhou Z H. ML-KNN: A lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048. [CrossRef] [Google Scholar]
  21. Ju X C, Tian Y J, Liu D L, et al. Nonparallel hyperplanes support vector machine for multi-class classification[J]. Procedia Computer Science, 2015, 51(1): 1574-1582. [CrossRef] [Google Scholar]
  22. Jia X Y, Li Z C, Zheng X A, et al. Label distribution learning with label correlations on local samples[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(4): 1619-1631. [CrossRef] [Google Scholar]
  23. Li R X, Du J X, Ding J M, et al. Semi-supervised multi-label dimensionality reduction learning by instance and label correlations[J]. Mathematics, 2023, 11(3): 782. [CrossRef] [Google Scholar]
  24. Crammer K, Singer Y. A family of additive online algorithms for category ranking[J]. Journal of Machine Learning Research, 2003, 3: 1025-1058. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.