Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 1, February 2024
Page(s) 45 - 50
DOI https://doi.org/10.1051/wujns/2024291045
Published online 15 March 2024
  1. Shor P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1995, 52(4): R2493-R2496. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  2. Steane A. Multiple particle interference and quantum error correction [EB/OL]. [2023-05-26]. http://arxiv.org/abs/quant-ph/9601029.pdf. [Google Scholar]
  3. Calderbank A R, Rains E M, Shor P M, et al. Quantum error correction via codes over GF(4) [J]. IEEE Transactions on Information Theory, 1998, 44(4): 1369-1387. [CrossRef] [MathSciNet] [Google Scholar]
  4. Sarvepalli P K, Klappenecker A, Rötteler M. Asymmetric quantum codes: Constructions, bounds and performance [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465(2105): 1645-1672. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  5. Wang L, Feng K Q, Ling S, et al. Asymmetric quantum codes: Characterization and constructions [J]. IEEE Transactions on Information Theory, 2010, 56(6): 2938-2945. [CrossRef] [MathSciNet] [Google Scholar]
  6. La Guardia G G. New families of asymmetric quantum BCH codes [J]. Quantum Information and Computation, 2011, 11(3&4): 239-252. [CrossRef] [MathSciNet] [Google Scholar]
  7. La Guardia G G. On the construction of asymmetric quantum codes [J]. International Journal of Theoretical Physics, 2014, 53(7): 2312-2322. [NASA ADS] [MathSciNet] [Google Scholar]
  8. Chen J Z, Li J P, Lin J. New optimal asymmetric quantum codes derived from negacyclic codes [J]. International Journal of Theoretical Physics, 2014, 53(1): 72-79. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  9. Chen X J, Zhu S X, Kai X S. Two classes of new optimal asymmetric quantum codes [J]. International Journal of Theoretical Physics, 2018, 57(6): 1829-1838. [Google Scholar]
  10. Chen J Z, Chen Y Q, Huang Y Y, et al. New optimal asymmetric quantum codes and quantum convolutional codes derived from constacyclic codes [J]. Quantum Information Processing, 2019, 18(2): 40. [NASA ADS] [CrossRef] [Google Scholar]
  11. Chen J Z, Li J P, Huang Y Y, et al. Some families of asymmetric quantum codes and quantum convolutional codes from constacyclic codes [J]. Linear Algebra and Its Applications, 2015, 475: 186-199. [CrossRef] [MathSciNet] [Google Scholar]
  12. Ezerman M F, Jitman S, Kiah H M, et al. Pure asymmetric quantum MDS codes from CSS construction: A complete characterization [J]. International Journal of Quantum Information, 2013, 11(3): 1350027. [Google Scholar]
  13. Wang L Q, Zhu S X. On the construction of optimal asymmetric quantum codes [J]. International Journal of Quantum Information, 2014, 12(3): 1450017. [Google Scholar]
  14. Xu G, Li R H, Guo L B, et al. New optimal asymmetric quantum codes constructed from constacyclic codes [J]. International Journal of Modern Physics B, 2017, 31(5): 1750030. [Google Scholar]
  15. Zhang G H, Chen B C, Li L C. New optimal asymmetric quantum codes from constacyclic codes [J]. Modern Physics Letters B, 2014, 28(15): 1450126. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  16. Huffman W C, Pless V. Fundamentals of Error-Correcting Codes [M]. Cambridge: Cambridge University Press, 2003. [CrossRef] [Google Scholar]
  17. MacWilliams F, Sloane N. The theory of error-correcting codes (north-holland [EB/OL]. [2023-05-10]. https://www.semanticscholar.org/paper/The-theory-of-error-correcting-codes-(north-holland-MacWilliams-Sloane/5a537cea549ef22e985ef84b621ea06261c8fb48. [Google Scholar]
  18. Ling S, Xing C P. Coding Theory [M]. Cambridge: Cambridge University Press, 2004. [CrossRef] [Google Scholar]
  19. Aydin N, Siap I, Ray-Chaudhuri D K. The structure of 1-generator quasi-twisted codes and new linear codes [J]. Designs, Codes and Cryptography, 2001, 24(3): 313-326. [CrossRef] [MathSciNet] [Google Scholar]
  20. Chen B C, Ling S, Zhang G H. Application of constacyclic codes to quantum MDS codes[J]. IEEE Transactions on Information Theory, 2015, 61(3): 1474-1484. [CrossRef] [MathSciNet] [Google Scholar]
  21. Ezerman M F, Ling S, Sole P. Additive asymmetric quantum codes [J]. IEEE Transactions on Information Theory, 2011, 57(8): 5536-5550. [CrossRef] [MathSciNet] [Google Scholar]
  22. Hurley T, Hurley D, Hurley B. Entanglement-assisted quantum error-correcting codes from units [EB/OL]. [2023-05-10]. http://arxiv.org/abs/1806.10875.pdf. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.