Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 2, April 2024
Page(s) 134 - 144
DOI https://doi.org/10.1051/wujns/2024292134
Published online 14 May 2024
  1. Bobadilla J, Ortega F, Hernando A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46:109-132. [CrossRef] [Google Scholar]
  2. Covington P, Adams J, Sargin E. Deep neural networks for YouTube recommendations[C]// Proceedings of ACM Conference on Recommender Systems. New York: ACM, 2016: 191-198. [CrossRef] [Google Scholar]
  3. Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016:7-10. [CrossRef] [Google Scholar]
  4. Zhang S, Yao L N, Sun A, et al. Deep learning based recommender system: A survey and new persperctives[J]. ACM Computing Surveys (CSUR), 2019, 52(1): 1-38. [Google Scholar]
  5. Dai J L. Study on the Sparsity Problem of Collaborative Filtering Algorithm[D]. Chongqing: Chongqing University, 2013(Ch). [Google Scholar]
  6. Vozalis M G, Margaritis K G. Using SVD and demographic data for the enhancement of generalized collaborative filtering[J]. Information Sciences, 2007, 177(15): 3017-3037. [CrossRef] [Google Scholar]
  7. Liu H, Guo M M, Pan W Q. Overview of personalized recommendation systems[J]. Journal of Changzhou University(Natural Science Edition), 2017, 29(3): 51-59(Ch). [Google Scholar]
  8. Liu X, Zhang F J, Hou Z Y, et al. Self-supervised learning: Generative or contrastive[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1): 857-876. [Google Scholar]
  9. He K M, Fan H Q, Wu Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 9729-9738. [Google Scholar]
  10. Lan Z Z, Chen M D, Goodman S, et al. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations[EB/OL]. [2019-09-26]. https://arxiv.org/pdf/1909.11942.pdf. [Google Scholar]
  11. Qiu J Z, Chen Q B, Dong Y X, et al. GCC: Graph contrastive coding for graph neural network pre-training[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 1150-1160. [CrossRef] [Google Scholar]
  12. Wu Y, DuBois C, Zheng A X, et al. Collaborative denoising auto-fncoders for top-N recommender systems[C]// Proceedings of the 9th ACM International Conference on Web Search and Data Mining. New York: ACM, 2016: 153-162. [Google Scholar]
  13. Li S, Kawale J, Fu Y. Deep collaborative filtering via marginalized denoising auto-encoder[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2015: 811-820. [Google Scholar]
  14. Gao M, Chen L H, He X N, et al. Bine: Bipartite network embedding[C]// Proceedings of the 41st International ACM SIGIR Conference on Research&Development in Information Retrieval. New York: ACM, 2018: 715-724. [Google Scholar]
  15. Zhang C X, Yu L, Wang Y, et al. Collaborative user network embedding for social recommender systems[C]// Proceedings of the 2017 SIAM International Conference on Data Mining. Beijing: Society for Industrial and Applied Mathematics, 2017: 381-389. [Google Scholar]
  16. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]// Proceedings of Advances in Neural Information Processing Systems. Berlin: Springer-Verlag, 2014: 2672-2680. [Google Scholar]
  17. Wang Q Y, Yin H Z, Wang H, et al. Enhancing collaborative filtering with generative augmentation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 548-556. [CrossRef] [Google Scholar]
  18. Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-06-20]. https//arXiv.org/arXiv.org/nlp.stanford.edu/tooob.com.2019:4171-4186. [Google Scholar]
  19. Grill J B, Strub F, AltchĂ© F, et al. Bootstrap your own latent-a new approach to self-supervised learning[J]. Advances in Neural Information Processing Systems, 2020, 33: 21271-21284. [Google Scholar]
  20. Jaiswal A, Babu A R, Zadeh M Z, et al. A survey on contrastive self-supervised learning[J]. Technologies, 2020, 9(1): 2. [Google Scholar]
  21. Chen C, Zhang M, Liu Y Q, et al. Social attentional memory network: Modeling aspect-and friend-level differences in recommendation[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 177-185. [CrossRef] [Google Scholar]
  22. Fan W Q, Ma Y, Li Q, et al. Graph neural networks for social recommendation[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 417-426. [CrossRef] [Google Scholar]
  23. Wu L, Sun P J, Fu Y J, et al. A neural influence diffusion model for social recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 235-244. [Google Scholar]
  24. Yu J L, Yin H Z, Li J D, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 413-424. [Google Scholar]
  25. Yu J L, Yin H Z, Gao M, et al. Socially-aware self-supervised tri-training for recommendation[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 2084-2092. [Google Scholar]
  26. Zhang Y , Yang Q. A survey on multi-task learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12):5586-5609. [CrossRef] [Google Scholar]
  27. He X N, Deng K, Wang X, et al. LightGCN: Simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. [Google Scholar]
  28. Huang B, Zheng S R, Fujita H, et al. A multi-task learning model for recommendation based on fusion of dynamic and static neighbors[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108190. [CrossRef] [Google Scholar]
  29. Oord A, Li Y Z, Vinyals O. Representation learning with contrastive predictive coding[EB/OL]. [2018-07-10]. https://arxiv.org/pdf/1807.03748.pdf. [Google Scholar]
  30. Lin Z H, Tian C X, Hou Y P, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]// Proceedings of the ACM Web Conference. New York:ACM, 2022: 2320-2329. [Google Scholar]
  31. Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of Uncertainty in Artificial Intelligence. New York:ACM, 2009: 452-461. [Google Scholar]
  32. He X N, Liao L Z, Zhang H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173-182. [Google Scholar]
  33. Wang X, He X N, Wang M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.