Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 2, April 2024
|
|
---|---|---|
Page(s) | 145 - 153 | |
DOI | https://doi.org/10.1051/wujns/2024292145 | |
Published online | 14 May 2024 |
- Kuang H Y, Wu J J. Survey of image semantic segmentation based on deep learning[J]. Computer Engineering and Applications, 2019, 55(19): 12-21, 42(Ch). [Google Scholar]
- Jain A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666. [CrossRef] [Google Scholar]
- Barash D, Comaniciu D. Meanshift clustering for DNA microarray analysis[C]//Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference. New York: ACM, 2004: 578-579. [Google Scholar]
- Janouek J, Gajdo P, Radecky M, et al. Gaussian mixture model cluster forest[C]//2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). New York: IEEE, 2015: 1019-1023. [CrossRef] [Google Scholar]
- Johnson S C. Hierarchical clustering schemes[J]. Psychometrika, 1967, 32(3): 241-254. [CrossRef] [Google Scholar]
- Wang Y X, Zhao X J. Improvement of color image segmentation algorithm based on K-means clustering[J]. Computer Application and Software, 2010, 27(8): 127-130(Ch). [Google Scholar]
- Li Y S, Li M. Fuzzy C-means clustering image segmentation based on gray space features[J]. Computer Engineering and Design, 2007, 28(6): 1358-1360, 1363(Ch). [Google Scholar]
- Kang J Y, Min L Q. Image segmentation based on weighted fuzzy C-means clustering accounting for pixel spatial information[J]. Journal of University of Science and Technology Beijing, 2008, 30(9): 1072-1078(Ch). [Google Scholar]
- Kwatra V, Schödl A, Essa I, et al. Graphcut textures: Image and video synthesis using graph cuts[J]. ACM Transactions on Graphics, 2003, 22(3): 277-286. [CrossRef] [Google Scholar]
- Rother C. GrabCut: Interactive foreground extraction using iterated graph cuts[C]// Proceedings of Siggraph, 2004, 23: 309-314. [CrossRef] [Google Scholar]
- Grady L. Random walks for image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 28(11): 1768-1783. [CrossRef] [PubMed] [Google Scholar]
- Parkhi O M, Vedaldi A, Zisserman A. Deep face recognition[C]//Proceedings of the British Machine Vision Conference 2015. London: British Machine Vision Association, 2015: 1-6. [Google Scholar]
- Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2015: 1440-1448. [CrossRef] [Google Scholar]
- Li J N, Liang X D, Shen S M, et al. Scale-aware fast R-CNN for pedestrian detection[J]. IEEE Transactions on Multimedia, 2018, 20(4): 985-996. [Google Scholar]
- Zheng Z D, Yang Y. Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(4): 1106-1120. [CrossRef] [Google Scholar]
- Min S B, Chen X J, Zha Z J, et al. A two-stream mutual attention network for semi-supervised biomedical segmentation with noisy labels[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 4578-4585. [Google Scholar]
- Hwang J J, Yu S, Shi J B, et al. SegSort: Segmentation by discriminative sorting of segments[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2019: 7334-7344. [Google Scholar]
- Wang L J, Ouyang W L, Wang X G, et al. Visual tracking with fully convolutional networks[C]//2015 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2015: 3119-3127. [CrossRef] [Google Scholar]
- Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [CrossRef] [PubMed] [Google Scholar]
- Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [CrossRef] [PubMed] [Google Scholar]
- Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation[C]//2015 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2015: 1520-1528. [CrossRef] [Google Scholar]
- Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(12):2481-2495. [CrossRef] [PubMed] [Google Scholar]
- Zhang X P, Ji J H, Wang L, et al. Overview of video-based human abnormal behavior recognition and detection methods [J]. Control and Decision, 2022, 37(1): 14-27(Ch). [Google Scholar]
- Shao Y H, Li W F, Zhang X Q, et al. Identification of aerial violence based on space-time map convolution and attention model[J]. Computer Science, 2022, 49(8): 6(Ch). [Google Scholar]
- Wang C X, Liu R. Group activity recognition algorithm based on interaction relationship grouping modeling fusion[J]. Computer and Modernization, 2022(1): 1-9(Ch). [Google Scholar]
- Hu S. Research on Learning and Prediction Model of Crowd Movement Trajectory Representation Based on Deep Learning[M]. Beijing: Beijing University of Chemical Technology, 2021(Ch). [Google Scholar]
- Ji S W, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221-231. [Google Scholar]
- Wald J, Navab N, Tombari F. Learning 3D semantic scene graphs with instance embeddings[J]. International Journal of Computer Vision, 2022, 130(3): 630-651. [Google Scholar]
- Fernando B, Gavves E, Jose Oramas M, et al. Modeling video evolution for action recognition[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2015: 5378-5387. [CrossRef] [Google Scholar]
- Bilen H, Fernando B, Gavves E, et al. Dynamic image networks for action recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 3034-3042. [CrossRef] [Google Scholar]
- Ali Khowaja S, Lee S L. Semantic image networks for human action recognition[J]. International Journal of Computer Vision, 2020, 128(2): 393-419. [CrossRef] [Google Scholar]
- Dunne R A, Campbell N A. On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function[C]//Proceedings of the 8th Australian Conference on the Neural Networks. Melbourne: ANN, 1997: 181-185. [Google Scholar]
- Chen J, Fu J, Zhang M. An atmospheric correction algorithm for Landsat/TM imagery basing on inverse distance spatial interpolation algorithm: A case study in Taihu Lake[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(4): 882-889. [Google Scholar]
- Falk T, Mai D, Bensch R, et al. U-Net: Deep learning for cell counting, detection, and morphometry [J]. Nature Methods, 2019, 16(1): 67-70. [CrossRef] [PubMed] [Google Scholar]
- Tang Y, Tan D, Li H, et al. RTC_TongueNet: An improved tongue image segmentation model based on DeepLabV3[J]. Digital Health, 2024, 10: 20552076241242773. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.