Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 3, June 2024
Page(s) 193 - 194
DOI https://doi.org/10.1051/wujns/2024293193
Published online 03 July 2024
  1. Huang H Y, Kueng R, Preskill J. Information-theoretic bounds on quantum advantage in machine learning[J]. Physical Review Letters, 2021, 126(19): 190505. [CrossRef] [PubMed] [Google Scholar]
  2. Chen S T, Cotler J, Huang H Y, et al. Exponential separations between learning with and without quantum memory[C]//2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). New York: IEEE, 2022: 574-585. [CrossRef] [Google Scholar]
  3. Huang H Y, Broughton M, Cotler J, et al. Quantum advantage in learning from experiments[J]. Science, 2022, 376(6598): 1182-1186. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. Hao S H, Shi H W, Li W, et al. Entanglement-assisted communication surpassing the ultimate classical capacity[J]. Physical Review Letters, 2021, 126(25): 250501. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  5. Wang X B, Du Y X, Tu Z Z, et al. Transition role of entangled data in quantum machine learning[J]. Nature Communications, 2024, 15(1): 3716. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  6. Sharma K, Cerezo M, Holmes Z, et al. Reformulation of the no-free-lunch theorem for entangled datasets[J]. Physical Review Letters, 2022, 128(7): 070501. [CrossRef] [PubMed] [Google Scholar]
  7. Zhao H M, Lewis L, Kannan I, et al. Learning quantum states and unitaries of bounded gate complexity[EB/OL]. [2023-05-10]. https://arxiv.org/abs/2310.19882. □ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.