Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 4, August 2024
Page(s) 374 - 382
DOI https://doi.org/10.1051/wujns/2024294374
Published online 04 September 2024
  1. Shi Z, Chen Y, Chen Y, et al. Flora of China Volume 20-21 (Asteraceae)[M]. Beijing & St. Louis: Science Press & Missouri Botanical Garden Press, 2011. [Google Scholar]
  2. Xuan T D, Khanh T D. Chemistry and pharmacology of Bidens Pilosa: An overview[J]. Journal of Pharmaceutical Investigation, 2016, 46(2): 91-132. [CrossRef] [PubMed] [Google Scholar]
  3. Singh G, Passsari A K, Singh P, et al. Pharmacological potential of Bidens Pilosa L. and determination of bioactive compounds using UHPLC-QqQLIT-MS/MS and GC/MS[J]. BMC Complementary and Alternative Medicine, 2017, 17(1): 492. [Google Scholar]
  4. Shen Y W, Sun Z L, Shi P Y, et al. Anticancer effect of petroleum ether extract from Bidens Pilosa L. and its constituent's analysis by GC-MS[J]. Journal of Ethnopharmacology, 2018, 217: 126-133. [Google Scholar]
  5. Wang G W, Cao J, Wang X Q. Effects of ethanol extract from Bidens Pilosa L. on spontaneous activity, learning and memory in aged rats[J]. Experimental Gerontology, 2019, 125: 110651. [CrossRef] [PubMed] [Google Scholar]
  6. Liu Y Z, Li C Y, Shen X F, et al. The use of traditional Chinese medicines in relieving exercise-induced fatigue[J]. Frontiers in Pharmacology, 2022, 13: 969827. [CrossRef] [Google Scholar]
  7. Bouzid M A, Hammouda O, Matran R, et al. Changes in oxidative stress markers and biological markers of muscle injury with aging at rest and in response to an exhaustive exercise[J]. PLoS One, 2014, 9(3): e90420. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  8. Rodríguez-Mesa X M, Contreras Bolaños L A, Mejía A, et al. Immunomodulatory properties of natural extracts and compounds derived from Bidens pilosa L.: Literature review[J]. Pharmaceutics, 2023, 15(5): 1491. [CrossRef] [PubMed] [Google Scholar]
  9. Zafar F, Asif H M, Shaheen G, et al. A comprehensive review on medicinal plants possessing antioxidant potential[J]. Clinical and Experimental Pharmacology & Physiology, 2023, 50(3): 205-217. [Google Scholar]
  10. Frida L, Rakotonirina S, Rakotonirina A, et al. In vivo and in vitro effects of Bidens pilosa L. (Asteraceae) leaf aqueous and ethanol extracts on primed-oestrogenized rat uterine muscle[J]. African Journal of Traditional, Complementary, and Alternative Medicines, 2007, 5(1): 79-91. [PubMed] [Google Scholar]
  11. Kraeuter A K, Guest P C, Sarnyai Z. The elevated plus maze test for measuring anxiety-like behavior in rodents[J]. Methods in Molecular Biology, 2019, 1916: 69-74. [CrossRef] [PubMed] [Google Scholar]
  12. Wang B. Effects of Exercise on HPA Axis Secretion, Hippocampus-Associated Proteins and Signal Molecules[D]. Shanghai: East China Normal Univesity, 2008(Ch). [Google Scholar]
  13. Keane S P, Chadman K K, Gomez A R, et al. Pros and cons of narrow- versus wide-compartment rotarod apparatus: An experimental study in mice[J]. Behavioural Brain Research, 2024, 463: 114901. [CrossRef] [PubMed] [Google Scholar]
  14. Bian X Y, Wang Y W, Yang R R, et al. Anti-fatigue properties of the ethanol extract of Moringa oleifera leaves in mice[J]. Journal of the Science of Food and Agriculture, 2023, 103(11): 5500-5510. [CrossRef] [PubMed] [Google Scholar]
  15. Li C G, Zhu X J, Zhang J X, et al. Polysaccharides from apple pomace exhibit anti-fatigue activity through increasing glycogen content[J]. Journal of Food Science and Technology, 2023, 60(1): 283-291. [CrossRef] [PubMed] [Google Scholar]
  16. López-Soldado I, Guinovart J J, Duran J. Increased liver glycogen levels enhance exercise capacity in mice[J]. The Journal of Biological Chemistry, 2021, 297(2): 100976. [CrossRef] [PubMed] [Google Scholar]
  17. Zhang Y L, Li A H, Yang X G. Effect of lemon seed flavonoids on the anti-fatigue and antioxidant effects of exhausted running exercise mice[J]. Journal of Food Biochemistry, 2021, 45(4): e13620. [Google Scholar]
  18. Lee S M, Kim Y H, Kim Y R, et al. Anti-fatigue potential of Pinus koraiensis leaf extract in an acute exercise-treated mouse model[J]. Biomedicine & Pharmacotherapy, 2022, 153: 113501. [CrossRef] [Google Scholar]
  19. Fang L, Zhang R X, Wei Y, et al. Anti-fatigue effects of fermented soybean protein peptides in mice[J]. Journal of the Science of Food and Agriculture, 2022, 102(7): 2693-2703. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  20. Ferguson B S, Rogatzki M J, Goodwin M L, et al. Lactate metabolism: Historical context, prior misinterpretations, and current understanding[J]. European Journal of Applied Physiology, 2018, 118(4): 691-728. [CrossRef] [PubMed] [Google Scholar]
  21. Clark J H, Conlee R K. Muscle and liver glycogen content: Diurnal variation and endurance[J]. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 1979, 47(2): 425-428. [PubMed] [Google Scholar]
  22. Brooks G A. The science and translation of lactate shuttle theory[J]. Cell Metabolism, 2018, 27(4): 757-785. [Google Scholar]
  23. Sinaga F A, Harahap U, Silalahi J, et al. Antioxidant effect of virgin coconut oil on urea and creatinine levels on maximum physical activity[J]. Open Access Macedonian Journal of Medical Sciences, 2019, 7(22): 3781-3785. [CrossRef] [PubMed] [Google Scholar]
  24. Xu C J, Liu X Y, Wang Y B, et al. Association between physical activity and higher serum creatinine/uric acid by dose-response association[J]. Biomedical and Environmental Sciences, 2018, 31(10): 769-772. [Google Scholar]
  25. Yuan L P, Chen F H, Ling L, et al. Protective effects of total flavonoids of Bidens pilosa L. (TFB) on animal liver injury and liver fibrosis[J]. Journal of Ethnopharmacology, 2008, 116(3): 539-546. [Google Scholar]
  26. Gao X. Protective Effect and Mechanism of Decoction of Bidens pilosa L. on Non-Alcoholic Fatty Liver[D]. Luoyang: Henan University of Science and Technology, 2020(Ch). [Google Scholar]
  27. Gallego-Selles A, Galvan-Alvarez V, Martinez-Canton M, et al. Fast regulation of the NF-κB signalling pathway in human skeletal muscle revealed by high-intensity exercise and ischaemia at exhaustion: Role of oxygenation and metabolite accumulation[J]. Redox Biology, 2022, 55: 102398. [CrossRef] [PubMed] [Google Scholar]
  28. Reardon T F, Allen D G. Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance[J]. Experimental Physiology, 2009, 94(6): 720-730. [CrossRef] [PubMed] [Google Scholar]
  29. Westerblad H, Bruton J D, Katz A. Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability[J]. Experimental Cell Research, 2010, 316(18): 3093-3099. [CrossRef] [PubMed] [Google Scholar]
  30. Huang S Y, Sun H Y, Lin D, et al. Camellia oil exhibits anti-fatigue property by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice[J]. Journal of Food Science, 2024, 89(4): 2465-2481. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.