Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 5, October 2024
Page(s) 397 - 402
DOI https://doi.org/10.1051/wujns/2024295397
Published online 20 November 2024
  1. Pellicer M, Quintanilla R. Continuous dependence and convergence for Moore-Gibson-Thompson heat equation[J]. Acta Mechanica, 2023, 234(8): 3241-3257. [CrossRef] [MathSciNet] [Google Scholar]
  2. Green A E, Naghdi P M. On undamped heat waves in an elastic solid[J]. Journal of Thermal Stresses, 1992, 15(2): 253-264. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  3. Green A E, Naghdi P M. Thermoelasticity without energy dissipation[J]. Journal of Elasticity, 1993, 31(3): 189-208. [CrossRef] [MathSciNet] [Google Scholar]
  4. Chen W H, Ikehata R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case[J]. Journal of Differential Equations, 2021, 292: 176-219. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  5. Chen W H, Dao T A. The Cauchy problem for the nonlinear viscous Boussinesq equation in the L framework[J]. Journal of Differential Equations, 2022, 320: 558-597. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  6. Chen W H. Cauchy problem for thermoelastic plate equations with different damping mechanisms[J]. Communications in Mathematical Sciences, 2020, 18(2): 429-457. [CrossRef] [MathSciNet] [Google Scholar]
  7. Liu Y, Qin X L, Zhang S H. Global existence and estimates for Blackstock's model of thermoviscous flow with second sound phenomena[J]. Journal of Differential Equations, 2022, 324(2): 76-101. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  8. Liu Y, Shi J C. Coupled plate equations with indirect damping: Smoothing effect, decay properties and approximation[J]. Zeitschrift Für Angewandte Mathematik und Physik, 2021, 73(1): 11. [Google Scholar]
  9. Liu Y, Qin X L, Shi J C, et al. Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in R2[J]. Appl Math Comput, 2021, 411: 126488. [Google Scholar]
  10. Liu Y, Xiao S Z. Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain[J]. Nonlinear Analysis: Real World Applications, 2018, 42: 308-333. [CrossRef] [MathSciNet] [Google Scholar]
  11. Liu Y. Continuous dependence for a thermal convection model with temperature-dependent solubility[J]. Applied Mathematics and Computation, 2017, 308: 18-30. [CrossRef] [MathSciNet] [Google Scholar]
  12. Li Y F, Xiao S Z, Zeng P. The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere[J]. Journal of Mathematical Inequalities, 2021, 15(1): 293-304. [CrossRef] [MathSciNet] [Google Scholar]
  13. Li Y F, Chen X J, Shi J C. Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid[J]. Applied Mathematics & Optimization, 2021, 84(1): 979-999. [CrossRef] [MathSciNet] [Google Scholar]
  14. Li Y F, Chen X J. Phragmén-Lindelöf alternative results in time-dependent double-diffusive Darcy plane flow[J]. Mathematical Methods in the Applied Sciences, 2022, 45(11): 6982-6997. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.