Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 5, October 2024
Page(s) 403 - 411
DOI https://doi.org/10.1051/wujns/2024295403
Published online 20 November 2024
  1. Zhang L M, Gao H T, Chen Z Q, et al. Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudo spectral method[J]. Nonlinear Dynamics, 2013, 72(1): 1-8. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  2. Jiang X Z, Jian J B. A sufficient descent Dai-Yuan type nonlinear conjugate gradient method for unconstrained optimization problems[J]. Nonlinear Dynamics, 2013, 72(1): 101-112. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  3. Sun J, Zhang J P. Global convergence of conjugate gradient methods without line search[J]. Annals of Operations Research, 2001, 103(1): 161-173. [CrossRef] [MathSciNet] [Google Scholar]
  4. Chen X D, Sun J. Global convergence of a two-parameter family of conjugate gradient methods without line search[J]. Journal of Computational and Applied Mathematics, 2002, 146(1): 37-45. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  5. Hestenes M R, Stiefel E. Methods of conjugate gradients for solving linear systems[J]. Journal of Research of the National Bureau of Standards, 1952, 49(6): 409-436. [CrossRef] [Google Scholar]
  6. Fletcher R, Reeves C M. Function minimization by conjugate gradients[J]. The Computer Journal, 1964, 7(2): 149-154. [CrossRef] [MathSciNet] [Google Scholar]
  7. Polyak B T. The conjugate gradient method in extremal problems[J]. USSR Computational Mathematics & Mathematical Physics, 1969, 9(4): 94-112. [CrossRef] [Google Scholar]
  8. Flecher R. Practical Methods of Optimization, Vol1: Unconstrained Optimization[M]. New York: John Wiley & Sons, 1987. [Google Scholar]
  9. Liu Y, Storey C. Efficient generalized conjugate gradient algorithms[J]. Journal of Optimization Theory and Application, 1991, 69(1): 129-137. [CrossRef] [MathSciNet] [Google Scholar]
  10. Dai Y H, Yuan Y X. A nonlinear conjugate gradient with a strong global convergence property[J]. SIAM Journal on Optimization, 1999, 10(1): 177-182. [CrossRef] [MathSciNet] [Google Scholar]
  11. Deepho J, Abubakar A B, Malik M, et al. Solving unconstrained optimization problems via hybrid CD-DY conjugate gradient methods with applications[J]. Journal of Computational and Applied Mathematics, 2022, 405: 113823. [CrossRef] [MathSciNet] [Google Scholar]
  12. Abubakar A B, Kumam P, Malik M, et al. A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems[J]. Mathematics and Computers in Simulation, 2022, 201: 640-657. [CrossRef] [MathSciNet] [Google Scholar]
  13. Goncalves M L N, Lima F S, Prudente L F. A study of Liu-Storey conjugate gradient methods for vector optimization[J]. Applied Mathematics and Computation, 2022, 425: 127099. [CrossRef] [Google Scholar]
  14. Chen C L, Luo L L, Han C H, et al. Global convergence of an extended descent algorithm without line search for unconstrained optimization[J]. Journal of Applied Mathematics and Physics, 2018, 6(1): 130-137. [CrossRef] [Google Scholar]
  15. Yu Z S. Global convergence of a memory gradient method without line search[J]. Journal of Applied Mathematics & Computing, 2008, 26(1): 545-553. [CrossRef] [MathSciNet] [Google Scholar]
  16. Narushima Y S. A memory gradient method without line search for unconstrained optimization[J]. SUT Journal of Mathematics, 2006, 42(2): 191-206. [CrossRef] [MathSciNet] [Google Scholar]
  17. Yin L, Chen X D. Global convergence of two kinds of three-term conjugate gradient methods without line search[J]. Asia Pacific Journal of Operational Research, 2013, 30(1):1-10. [Google Scholar]
  18. Li X, Chen X D. Global convergence of shortest-residual family of conjugate gradient methods without line search[J]. Asia Pacific Journal of Operational Research, 2005, 22(4): 529-538. [CrossRef] [MathSciNet] [Google Scholar]
  19. Du S Q, Chen Y Y. Global convergence of a modified spectral FR conjugate gradient method[J]. Applied Mathematics and Computation, 2008, 202(2): 766-770. [CrossRef] [MathSciNet] [Google Scholar]
  20. Zhu H,Chen X D. Global convergence of a special case of the Dai-Yuan family without line search[J]. Asia-Pacific Journal of Operational Research, 2008, 25(3): 411-420. [CrossRef] [MathSciNet] [Google Scholar]
  21. Zhu T F, Yan Z Z, Peng X Y. A modified nonlinear conjugate gradient method for engineering computation[J]. Mathematical Problems in Engineering, 2017, 2017(1): 1425857. [CrossRef] [PubMed] [Google Scholar]
  22. Dolan E D, Moré J J. Benchmarking optimization software with performance profiles[J]. Mathematical Programming, 2002, 91(2): 201-213. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.