Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 5, October 2024
Page(s) 453 - 460
DOI https://doi.org/10.1051/wujns/2024295453
Published online 20 November 2024
  1. Corman V M, Lienau J, Witzenrath M. Coronaviruses as the cause of respiratory infections[J]. Der Internist, 2019, 60(11): 1136-1145. [CrossRef] [PubMed] [Google Scholar]
  2. Vlasova A N, Diaz A, Damtie D, et al. Novel canine coronavirus isolated from a hospitalized patient with pneumonia in East Malaysia[J]. Clinical Infectious Diseases, 2022, 74(3): 446-454. [CrossRef] [PubMed] [Google Scholar]
  3. Chan J F, Kok K H, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan[J]. Emerg Microbes Infect, 2020, 9(1): 221-236. [CrossRef] [PubMed] [Google Scholar]
  4. Chan J F W, Yuan S F, Kok K H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster[J]. Lancet, 2020, 395(10223): 514-523. [CrossRef] [PubMed] [Google Scholar]
  5. Organization W H. SARS-CoV-2 variants, working definitions and actions taken[EB/OL]. [2023-05-10]. https://www.who.int/activities/tracking-SARS-CoV-2-variants. [Google Scholar]
  6. Taleghani N, Taghipour F. Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art[J]. Biosensors & Bioelectronics, 2021, 174: 112830. [CrossRef] [PubMed] [Google Scholar]
  7. Ji T X, Liu Z W, Wang G Q, et al. Detection of COVID-19: A review of the current literature and future perspectives[J]. Biosensors & Bioelectronics, 2020, 166: 112455. [CrossRef] [PubMed] [Google Scholar]
  8. Krüttgen A, Cornelissen C G, Dreher M, et al. Comparison of the SARS-CoV-2 rapid antigen test to the real star Sars-CoV-2 RT PCR kit[J]. Journal of Virological Methods, 2021, 288: 114024. [CrossRef] [PubMed] [Google Scholar]
  9. Broughton J P, Deng X D, Yu G X, et al. CRISPR-Cas12-based detection of SARS-CoV-2[J]. Nature Biotechnology, 2020, 38: 870-874. [CrossRef] [PubMed] [Google Scholar]
  10. Wang R, Qian C Y, Pang Y N, et al. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection[J]. Biosensors & Bioelectronics, 2021, 172: 112766. [CrossRef] [PubMed] [Google Scholar]
  11. Joung J, Ladha A, Saito M, et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing[J]. The New England Journal of Medicine, 2020, 383(15): 1492-1494. [CrossRef] [PubMed] [Google Scholar]
  12. Joung J, Ladha A, Saito M, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics[EB/OL]. [2023-05-10]. https://pubmed.ncbi.nlm.nih.gov/32511521/. [Google Scholar]
  13. Guglielmi G. First CRISPR test for the coronavirus approved in the United States[EB/OL]. [2022-05-10]. https://www.nature.com/articles/d41586-020-01402-9. [Google Scholar]
  14. Nzelu C O, Kato H, Peters N C. Loop-mediated isothermal amplification (LAMP): An advanced molecular point-of-care technique for the detection of Leishmania infection[J]. PLoS Neglected Tropical Diseases, 2019, 13(11): e0007698. [CrossRef] [PubMed] [Google Scholar]
  15. Kitajima H, Tamura Y, Yoshida H, et al. Clinical COVID-19 diagnostic methods: Comparison of reverse transcription loop-mediated isothermal amplification (RT-LAMP) and quantitative RT-PCR (qRT-PCR)[J]. Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology, 2021, 139: 104813. [CrossRef] [Google Scholar]
  16. Fozouni P, Son S, de León Derby M D, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy[J]. Cell, 2021, 184(2): 323-333.e9. [CrossRef] [PubMed] [Google Scholar]
  17. Shi K, Xie S Y, Tian R Y, et al. A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics[J]. Science Advances, 2021, 7(5): eabc7802. [CrossRef] [Google Scholar]
  18. Huang M Q, Zhou X M, Wang H Y, et al. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection[J]. Analytical Chemistry, 2018, 90(3): 2193-2200. [CrossRef] [PubMed] [Google Scholar]
  19. Zhou W H, Hu L, Ying L M, et al. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection[J]. Nature Communications, 2018, 9(1): 5012. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  20. Lee R A, Puig H, Nguyen P Q, et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25722-25731. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  21. Swarts D C, Jinek M. Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a[J]. Molecular Cell, 2019, 73(3): 589-600.e4. [CrossRef] [PubMed] [Google Scholar]
  22. Pacesa M, Pelea O, Past Jinek M., present, and future of CRISPR genome editing technologies[J]. Cell, 2024, 187(5): 1076-1100. [CrossRef] [PubMed] [Google Scholar]
  23. Tong X H, Zhang K, Han Y, et al. Fast and sensitive CRISPR detection by minimized interference of target amplification[J]. Nature Chemical Biology, 2024, 20: 885-893. [CrossRef] [PubMed] [Google Scholar]
  24. Ren X J, Yang Z H, Xu J, et al. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila[J]. Cell Reports, 2014, 9(3): 1151-1162. [CrossRef] [PubMed] [Google Scholar]
  25. Ding X, Yin K, Li Z Y, et al. All-in-one dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus[EB/OL]. [2023-05-10]. https://pubmed.ncbi.nlm.nih.gov/32511323/. [Google Scholar]
  26. Welch N L, Zhu M L, Hua C, et al. Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants[J]. Nature Medicine, 2022, 28: 1083-1094. [CrossRef] [PubMed] [Google Scholar]
  27. Kumar M, Gulati S, Ansari A H, et al. FnCas9-based CRISPR diagnostic for rapid and accurate detection of major SARS-CoV-2 variants on a paper strip[J]. eLife, 2021, 10: e67130. [CrossRef] [PubMed] [Google Scholar]
  28. Wang Y X, Zhang Y, Chen J B, et al. Detection of SARS-CoV-2 and its mutated variants via CRISPR-Cas13-based transcription amplification[J]. Analytical Chemistry, 2021, 93(7): 3393-3402. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.