Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 5, October 2024
|
|
---|---|---|
Page(s) | 461 - 470 | |
DOI | https://doi.org/10.1051/wujns/2024295461 | |
Published online | 20 November 2024 |
- Huang X L, Zhang Z H, Jia L, et al. Endoplasmic reticulum stress contributes to vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells[J]. Cancer Letters, 2010, 296(1): 123-131. [CrossRef] [PubMed] [Google Scholar]
- Liu H K, Wang Q, Li Y, et al. Inhibitory effects of γ-tocotrienol on invasion and metastasis of human gastric adenocarcinoma SGC-7901 cells[J]. The Journal of Nutritional Biochemistry, 2010, 21(3): 206-213. [CrossRef] [PubMed] [Google Scholar]
- Ghobrial I M, Witzig T E, Adjei A A. Targeting apoptosis pathways in cancer therapy[J]. CA: A Cancer Journal for Clinicians, 2005, 55(3): 178-194. [CrossRef] [PubMed] [Google Scholar]
- Hasenknopf B. Polyoxometalates: Introduction to a class of inorganic compounds and their biomedical applications[J]. Frontiers in Bioscience: A Journal and Virtual Library, 2005, 10: 275-287. [CrossRef] [Google Scholar]
- Čolović M B, Lacković M, Lalatović J, et al. Polyoxometalates in biomedicine: Update and overview[J]. Current Medicinal Chemistry, 2020, 27(3): 362-379. [CrossRef] [PubMed] [Google Scholar]
- Gerth H U V, Rompel A, Krebs B, et al. Cytotoxic effects of novel polyoxotungstates and a platinum compound on human cancer cell lines[J]. Anti-Cancer Drugs, 2005, 16(1): 101-106. [CrossRef] [PubMed] [Google Scholar]
- Wang J, Liu Y, Xu K, et al. Broad-spectrum antiviral property of polyoxometalate localized on a cell surface[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9785-9789. [CrossRef] [PubMed] [Google Scholar]
- Herve M, Sinoussi-Barre F, Chermann J C, et al. Correlation between structure of polyoxotungstates and their inhibitory activity on polymerases[J]. Biochemical and Biophysical Research Communications, 1983, 116(1): 222-229. [CrossRef] [PubMed] [Google Scholar]
- Aureliano M, Gândara R M C. Decavanadate effects in biological systems[J]. Journal of Inorganic Biochemistry, 2005, 99(5): 979-985. [CrossRef] [PubMed] [Google Scholar]
- Lee I S, Long J R, Prusiner S B, et al. Selective precipitation of prions by polyoxometalate complexes[J]. Journal of the American Chemical Society, 2005, 127(40): 13802-13803. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Müller C E, Iqbal J, Baqi Y, et al. Polyoxometalates—A new class of potent ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(23): 5943-5947. [CrossRef] [PubMed] [Google Scholar]
- Balula S S, Santos I C M S, Barbosa A D S, et al. Manganese mono-substituted borotungstate: Characterization and catalytic application[J]. Materials Science Forum, 2012, 730: 975-980. [CrossRef] [Google Scholar]
- Kikukawa Y, Suzuki K, Yamaguchi K, et al. Synthesis, structure characterization, and reversible transformation of a cobalt salt of a dilacunary γ-keggin silicotungstate and sandwich-type di- and tetracobalt-containing silicotungstate dimers[J]. Inorganic Chemistry, 2013, 52(15): 8644-8652. [CrossRef] [PubMed] [Google Scholar]
- Dutta D, Jana A D, Debnath M, et al. Design of tri-substituted dodecatungstosilicate from a trilacunary silicotungstate by insertion of manganese ions of [Mn3(μ3-O)(2-Cl-benzoato)6(py)3]: Synthesis, structure, redox and magnetic studies[J]. European Journal of Inorganic Chemistry, 2010, 35: 5517-5522. [CrossRef] [Google Scholar]
- Wang L, Zhou B B, Yu K, et al. Novel antitumor agent, trilacunary Keggin-type tungstobismuthate, inhibits proliferation and induces apoptosis in human gastric cancer SGC-7901 cells[J]. Inorganic Chemistry, 2013, 52(9): 5119-5127. [CrossRef] [PubMed] [Google Scholar]
- Wang L, Yu K, Zhou B B, et al. The inhibitory effects of a new cobalt-based polyoxometalate on the growth of human cancer cells[J]. Dalton Transactions, 2014, 43(16): 6070-6078. [CrossRef] [PubMed] [Google Scholar]
- Sava G, Bergamo A. Ruthenium-based compounds and tumour growth control (review)[J]. International Journal of Oncology, 2000, 17(2): 353-365. [PubMed] [Google Scholar]
- Rademaker-Lakhai J M, van den Bongard D, Pluim D, et al. A Phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent[J]. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2004, 10(11): 3717-3727. [CrossRef] [PubMed] [Google Scholar]
- Sadakane M, Tsukuma D, Dickman M H, et al. Dimerization of mono-ruthenium substituted α-Keggin-type tungstosilicate[α-SiW11O39RuIII(H2O)]5- to µ-oxo-bridged dimer in aqueous solution: Synthesis, structure, and redox studies[J]. Dalton Transactions, 2007, 26: 2833-2838. [CrossRef] [Google Scholar]
- Yokoyama A, Ohkubo K, Ishizuka T, et al. Remarkable enhancement of catalytic activity of a 2∶1 complex between a non-planar Mo(v)-porphyrin and a ruthenium-substituted Keggin-type heteropolyoxometalate in catalytic oxidation of benzyl alcohols[J]. Dalton Transactions, 2012, 41(33): 10006-10013. [CrossRef] [PubMed] [Google Scholar]
- Lahootun V, Besson C, Villanneau R, et al. Synthesis and characterization of the keggin-type ruthenium-nitrido derivative [PW11O39{RuN}]4- and evidence of its electrophilic reactivity[J]. Journal of the American Chemical Society, 2007, 129(22): 7127-7135. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu B, Yan J, Wang Y F, et al. Redox chemistry of ruthenium ions in mono-substituted Keggin tungstophosphate: A new synthetic extension for ruthenium derivatives based on[PW11O39Ru(VI)N](4.)[J]. Dalton Transactions, 2015, 44(38): 16882-16887. [CrossRef] [PubMed] [Google Scholar]
- Liu H Z, Yue B, Sun W L, et al. Synthesis and characterization of noble-metal-substituted Dawson-type polyoxometalates[J]. Transition Metal Chemistry, 1997, 22(4): 321-325. [CrossRef] [Google Scholar]
- Nomiya K, Torii H, Nomura K, et al. Synthesis and characterization of a monoruthenium(III)-substituted Dawson polyoxotungstate derived by Br2 oxidation of the 1∶2 complex of ruthenium(II) and [α2-P2W17O61]10-. The reactivity of cis-[RuCl2(DMSO)4] as a ruthenium source[J]. Journal of the Chemical Society, Dalton Transactions, 2001, 9: 1506-1512. [CrossRef] [Google Scholar]
- Ogo S, Shimizu N, Ozeki T, et al. Determination of α-Keggin structure of [GeW11O39RuIII(H2O)]5-. Reaction of[GeW11O39RuIII(H2O)]5- with dimethyl sulfoxide to form[GeW11O39RuIII(dmso)]5- and their structural characterization[J]. Dalton Trans, 2013, 42(7): 2540-2545. [CrossRef] [PubMed] [Google Scholar]
- Howells A R, Sankarraj A, Shannon C. A diruthenium-substituted polyoxometalate as an electrocatalyst for oxygen generation[J]. Journal of the American Chemical Society, 2004, 126(39): 12258-12259. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Morris A M, Anderson O P, Finke R G. Reinvestigation of a Ru2-incorporated polyoxometalate dioxygenase precatalyst, "[WZnRu2III(H2O)(OH)(ZnW9O34)2]11-": Evidence for marginal, ≤ 0.2 equivalents of Ru incorporation plus faster catalysis by physical mixtures of [RuII(DMSO)4Cl2] and the parent polyoxometalate [WZn3(H2O)2(ZnW9O34)2]12-[J]. Inorganic Chemistry, 2009, 48(10): 4411-4420. [CrossRef] [PubMed] [Google Scholar]
- Jia S F, Hao X L, Wen Y Z, et al. Synthesis, cytotoxicity, apoptosis and cell cycle arrest of a monoruthenium(II)-substituted Dawson polyoxotungstate[J]. Journal of Coordination Chemistry, 2019, 72(4): 633-644. [CrossRef] [MathSciNet] [Google Scholar]
- Tézé A, Hervé G. α-, β-, and γ-dodecatungstosilicic acids: isomers and related lacunary compounds[J]. Inorganic Syntheses, 1990, 27: 88-91. [Google Scholar]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays[J]. Journal of Immunological Methods, 1983, 65: 55-63. [CrossRef] [PubMed] [Google Scholar]
- Gamelas J A F, Carapuça H M, Balula M S, et al. Synthesis and characterisation of novel ruthenium multi-substituted polyoxometalates: α, β-[SiW9O37Ru4(H2O)3Cl3]7-[J]. Polyhedron, 2010, 29(16): 3066-3073. [CrossRef] [Google Scholar]
- Kortz U, Tézé A, Hervé G. A cubane-substituted polyoxoanion: Structure and magnetic properties of Cs2[H2PW9Ni4O34(OH)3(H2O)6]·5H2O[J]. Inorganic Chemistry, 1999, 38(9): 2038-2042. [CrossRef] [PubMed] [Google Scholar]
- Neumann R, Abu-Gnim C. Alkene oxidation catalyzed by a ruthenium-substituted heteropolyanion, SiRu(L)W11O39: The mechanism of the periodate-mediated oxidative cleavage[J]. Journal of the American Chemical Society, 1990, 112(16): 6025-6031. [NASA ADS] [CrossRef] [Google Scholar]
- Sadakane M, Higashijima M. Synthesis and electrochemical behavior of [SiW11O39RuIII(H2O)]5- and its oxo-bridged dimeric complex [SiW11O39RuIVORuIIISiW11O39]11-[J]. Dalton Transactions, 2003, 4: 659-664. [CrossRef] [Google Scholar]
- Neumann R, Khenkin A M, Dahan M. Hydroxylation of alkanes with molecular oxygen catalyzed by a new ruthenium-substituted polyoxometalate, [WZnRu(OH)(H2O)(ZnW9O34)2]11-[J]. Angewandte Chemie International Edition, 1995, 34(15): 1587-1589. [NASA ADS] [CrossRef] [Google Scholar]
- Quiñonero D, Wang Y, Morokuma K, et al. The role of the central atom in structure and reactivity of polyoxometalates with adjacent d-electron metal sites. computational and experimental studies of γ-[(Xn+O4)RuIII2(OH)2(MFM)10O32](8-n)- for MFM = Mo and W, and X = AlIII, SiIV, PV, and SVI[J]. The Journal of Physical Chemistry B, 2006, 110(1): 170-173. [CrossRef] [PubMed] [Google Scholar]
- Hao X L, Ma Y Y, Wang Y H, et al. New entangled coordination networks based on charge-tunable keggin-type polyoxometalates[J]. Chemistry—An Asian Journal, 2014, 9(3): 819-829. [CrossRef] [PubMed] [Google Scholar]
- Landsmann S, Wessig M, Schmid M, et al. Smart inorganic surfactants: More than surface tension[J]. Angewandte Chemie International Edition, 2012, 51(24): 5995-5999. [CrossRef] [PubMed] [Google Scholar]
- Yamase T. Anti-tumor, -viral, and-bacterial activities of polyoxometalates for realizing an inorganic drug[J]. Journal of Materials Chemistry, 2005, 15(45): 4773. [CrossRef] [Google Scholar]
- Li J F, Huang R Z, Yao G Y, et al. Synthesis and biological evaluation of novel aniline-derived Asiatic acid derivatives as potential anticancer agents[J]. European Journal of Medicinal Chemistry, 2014, 86: 175-188. [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Hu P C, Cai P, et al. Synthesis, characterization, crystal structure, cytotoxicity, apoptosis and cell cycle arrest of ruthenium(ii) complex [Ru(bpy)2(adpa)](PF6)2 (bpy = 2, 2'-bipyridine, adpa = 4-(4-aminophenyl)diazenyl-N-(pyridin-2-ylmethylene)aniline)[J]. RSC Advances, 2015, 5(15): 11591-11598. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.